Abstract

Recently, amorphous organic photorefractive materials have generated great excitement because of their excellent performance, which permits applications in high-density holographic storage, real-time image processing, and phase conjugation. However, the heterostructure of the devices (consisting of glass cover slides, transparent electrodes, and the photorefractive material) and the tilted recording and readout geometry commonly used result in multiple reflected beams in addition to the normal object and reference beams. This result leads to several photorefractive gratings competing inside the photorefractive polymer device. We prove the coexistence of these gratings by two-beam coupling and four-wave mixing experiments and demonstrate how to distinguish between them.

[Optical Society of America ]

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Ducharme , J. C. Scott , R. J. Twieg , and W. E. Moerner , Phys. Rev. Lett. PRLTAO 66 , 1846 ( 1991
    [CrossRef] [PubMed]
  2. K. Meerholz , B. L. Volodin , Sandalphon , B. Kippelen , and N. Peyghambarian , Nature NATUAS 371 , 497 ( 1994
    [CrossRef]
  3. P. M. Lundquist , R. Wortmann , C. Geletneky , R. J. Twieg , M. Jurich , V. Y. Lee , C. R. Moylan , and D. M. Burland , Science SCIEAS 274 , 1182 ( 1996
    [CrossRef] [PubMed]
  4. I. C. Khoo , H. Li , and Y. Liang , Opt. Lett. OPLEDP 19 , 1723 ( 1994
    [CrossRef] [PubMed]
  5. G. P. Wiederrecht , B. A. Yoon , and M. R. Waielewski , Science SCIEAS 270 , 1794 ( 1996
    [CrossRef]
  6. L. Wang , Y. Zhang , T. Wada , and H. Sasabe , Appl. Phys. Lett. APPLAB 69 , 728 ( 1996
    [CrossRef]
  7. R. Wortmann , C. Poga , R. J. Twieg , C. Geletneky , C. R. Moylan , P. M. Lundquist , R. G. DeVoe , P. M. Cotts , H. Horn , J. E. Rice , and D. M. Burland , J. Chem. Phys. JCPSA6 105 , 10,637 ( 1996
    [CrossRef]
  8. W. E. Moerner and S. M. Silence , Chem. Rev. CHREAY 94 , 127 ( 1994
    [CrossRef]
  9. Y. Zhang , R. Burzynski , S. Ghosal , and M. K. Casstevens , Adv. Mater. ADVMEW 8 , 111 ( 1996
    [CrossRef]
  10. K. Meerholz , Angew. Chem. Int. Ed. Engl. ACIEAY 36 , 945 ( 1997
    [CrossRef]
  11. P. M. Lundquist , C. Poga , R. G. DeVoe , Y. Jia , W. E. Moerner , M. P. Bernal , H. Coufal , R. K. Grygier , J. A. Hoffnagle , C. M. Jefferson , R. M. Macfarlane , R. M. Shelby , and G. T. Sincerbox , Opt. Lett. OPLEDP 21 , 890 ( 1996
    [CrossRef] [PubMed]
  12. B. L. Volodin , Sandalphon , K. Meerholz , B. Kippelen , N. K. Kukhtarev , and N. Peyghambarian , Opt. Eng. OPEGAR 34 , 2213 ( 1995
    [CrossRef]
  13. B. L. Volodin , B. Kippelen , K. Meerholz , B. Javidi , and N. Peyghambarian , Nature NATUAS 383 , 58 ( 1996
    [CrossRef]
  14. A. Grunnet-Jepsen , C. L. Thompson , and W. E. Moerner , Science SCIEAS 277 , 549 ( 1997
    [CrossRef]
  15. W. E. Moerner , S. M. Silence , F. Hache , and G. C. Bjorklund , J. Opt. Soc. Am. B JOBPDE 11 , 320 ( 1994
    [CrossRef]
  16. N. V. Kukhtarev , V. B. Markov , S. G. Odulov , M. S. Soskin , and V. L. Vinetskii , Ferroelectrics FEROA8 22 , 949 ( 1979
    [CrossRef]
  17. D. Kokron , S. M. Evanko , and L. M. Hayden , Opt. Lett. OPLEDP 20 , 2297 ( 1995
    [CrossRef]
  18. A. Grunnet-Jepsen , C. L. Thompson , R. J. Twieg , and W. E. Moerner , Amplified scattering in a high-gain photorefractive polymer , J. Opt. Soc. Am. B JOBPDE 15 , 901 ( 1998
    [CrossRef]
  19. K. Sutter and P. Gu nter , J. Opt. Soc. Am. B JOBPDE 7 , 2274 ( 1990
    [CrossRef]
  20. H. J. Bolink , V. V. Krasnikov , G. G. Maliaras , and G. Hadziiannou , J. Phys. Chem. JPCHAX 100 , 16,356 ( 1996
    [CrossRef]
  21. A. Grunnet-Jepsen , C. L. Thompson , and W. E. Moerner , Opt. Lett. OPLEDP 22 , 874 ( 1997
    [CrossRef] [PubMed]
  22. H. Kogelnik , Bell Syst. Tech. J. BSTJAN 48 , 2909 ( 1969
    [CrossRef]

Bolink, H. J

H. J. Bolink , V. V. Krasnikov , G. G. Maliaras , and G. Hadziiannou , J. Phys. Chem. JPCHAX 100 , 16,356 ( 1996
[CrossRef]

Evanko, S. M

Hadziiannou, G

H. J. Bolink , V. V. Krasnikov , G. G. Maliaras , and G. Hadziiannou , J. Phys. Chem. JPCHAX 100 , 16,356 ( 1996
[CrossRef]

Kokron, D

Kukhtarev, N. K

B. L. Volodin , Sandalphon , K. Meerholz , B. Kippelen , N. K. Kukhtarev , and N. Peyghambarian , Opt. Eng. OPEGAR 34 , 2213 ( 1995
[CrossRef]

Maliaras, G. G

H. J. Bolink , V. V. Krasnikov , G. G. Maliaras , and G. Hadziiannou , J. Phys. Chem. JPCHAX 100 , 16,356 ( 1996
[CrossRef]

Sandalphon,

B. L. Volodin , Sandalphon , K. Meerholz , B. Kippelen , N. K. Kukhtarev , and N. Peyghambarian , Opt. Eng. OPEGAR 34 , 2213 ( 1995
[CrossRef]

K. Meerholz , B. L. Volodin , Sandalphon , B. Kippelen , and N. Peyghambarian , Nature NATUAS 371 , 497 ( 1994
[CrossRef]

Waielewski, M. R

G. P. Wiederrecht , B. A. Yoon , and M. R. Waielewski , Science SCIEAS 270 , 1794 ( 1996
[CrossRef]

Other (22)

S. Ducharme , J. C. Scott , R. J. Twieg , and W. E. Moerner , Phys. Rev. Lett. PRLTAO 66 , 1846 ( 1991
[CrossRef] [PubMed]

K. Meerholz , B. L. Volodin , Sandalphon , B. Kippelen , and N. Peyghambarian , Nature NATUAS 371 , 497 ( 1994
[CrossRef]

P. M. Lundquist , R. Wortmann , C. Geletneky , R. J. Twieg , M. Jurich , V. Y. Lee , C. R. Moylan , and D. M. Burland , Science SCIEAS 274 , 1182 ( 1996
[CrossRef] [PubMed]

I. C. Khoo , H. Li , and Y. Liang , Opt. Lett. OPLEDP 19 , 1723 ( 1994
[CrossRef] [PubMed]

G. P. Wiederrecht , B. A. Yoon , and M. R. Waielewski , Science SCIEAS 270 , 1794 ( 1996
[CrossRef]

L. Wang , Y. Zhang , T. Wada , and H. Sasabe , Appl. Phys. Lett. APPLAB 69 , 728 ( 1996
[CrossRef]

R. Wortmann , C. Poga , R. J. Twieg , C. Geletneky , C. R. Moylan , P. M. Lundquist , R. G. DeVoe , P. M. Cotts , H. Horn , J. E. Rice , and D. M. Burland , J. Chem. Phys. JCPSA6 105 , 10,637 ( 1996
[CrossRef]

W. E. Moerner and S. M. Silence , Chem. Rev. CHREAY 94 , 127 ( 1994
[CrossRef]

Y. Zhang , R. Burzynski , S. Ghosal , and M. K. Casstevens , Adv. Mater. ADVMEW 8 , 111 ( 1996
[CrossRef]

K. Meerholz , Angew. Chem. Int. Ed. Engl. ACIEAY 36 , 945 ( 1997
[CrossRef]

P. M. Lundquist , C. Poga , R. G. DeVoe , Y. Jia , W. E. Moerner , M. P. Bernal , H. Coufal , R. K. Grygier , J. A. Hoffnagle , C. M. Jefferson , R. M. Macfarlane , R. M. Shelby , and G. T. Sincerbox , Opt. Lett. OPLEDP 21 , 890 ( 1996
[CrossRef] [PubMed]

B. L. Volodin , Sandalphon , K. Meerholz , B. Kippelen , N. K. Kukhtarev , and N. Peyghambarian , Opt. Eng. OPEGAR 34 , 2213 ( 1995
[CrossRef]

B. L. Volodin , B. Kippelen , K. Meerholz , B. Javidi , and N. Peyghambarian , Nature NATUAS 383 , 58 ( 1996
[CrossRef]

A. Grunnet-Jepsen , C. L. Thompson , and W. E. Moerner , Science SCIEAS 277 , 549 ( 1997
[CrossRef]

W. E. Moerner , S. M. Silence , F. Hache , and G. C. Bjorklund , J. Opt. Soc. Am. B JOBPDE 11 , 320 ( 1994
[CrossRef]

N. V. Kukhtarev , V. B. Markov , S. G. Odulov , M. S. Soskin , and V. L. Vinetskii , Ferroelectrics FEROA8 22 , 949 ( 1979
[CrossRef]

D. Kokron , S. M. Evanko , and L. M. Hayden , Opt. Lett. OPLEDP 20 , 2297 ( 1995
[CrossRef]

A. Grunnet-Jepsen , C. L. Thompson , R. J. Twieg , and W. E. Moerner , Amplified scattering in a high-gain photorefractive polymer , J. Opt. Soc. Am. B JOBPDE 15 , 901 ( 1998
[CrossRef]

K. Sutter and P. Gu nter , J. Opt. Soc. Am. B JOBPDE 7 , 2274 ( 1990
[CrossRef]

H. J. Bolink , V. V. Krasnikov , G. G. Maliaras , and G. Hadziiannou , J. Phys. Chem. JPCHAX 100 , 16,356 ( 1996
[CrossRef]

A. Grunnet-Jepsen , C. L. Thompson , and W. E. Moerner , Opt. Lett. OPLEDP 22 , 874 ( 1997
[CrossRef] [PubMed]

H. Kogelnik , Bell Syst. Tech. J. BSTJAN 48 , 2909 ( 1969
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Experimental geometry. D’s are detectors. The roman numbers mark cases discussed in the text [Eqs. (2)–(5)]. (b) Illustration of the multiple reflections for one writing beam in the multilayer PR polymer device: The interfaces are numbered (1–6) from top to bottom. Black rectangles symbolize an iris diaphragm. Circles mark contributions relevant for evaluation of the data (see text and Table 1).

Fig. 2
Fig. 2

Six different PR gratings resulting from the linear combination of the two primary beams, +0 and -0, and two secondary beams, +0* and -0*. Thin dotted lines, the x and z directions of the sample; thin dashed lines, bisectors of the beams that define gratings.

Fig. 3
Fig. 3

Field dependence of the primary (filled symbols, left axis) and the secondary (open symbols, right axis) beam intensities in one-beam-experiments performed at λ=690 nm on DMNPAA–PVK–ECZ–TNF for (a) s-polarized and (b) p-polarized light: beams +0 and +0* (squares) and beams -0 and -0* (circles), respectively. Note that two independent experiments are displayed for each polarization.

Fig. 4
Fig. 4

Field dependence of the reflection gain coefficient Γ{±0,±0*} for the +0 beam (filled symbols) and the -0 beam (open symbols) in one-beam (squares) and piezo (circles) experiments performed at λ=690 nm on DMNPAA–PVK–ECZ–TNF for (a) s-polarized and (b) p-polarized light.

Fig. 5
Fig. 5

Field dependence of the primary (filled symbols, left axis) and the secondary (open symbols, right axis) beam intensities in a piezo experiment (see text) performed at λ=690 nm on DMNPAA–PVK–ECZ–TNF for (a) s-polarized and (b) p-polarized light: beams +0 and +0* (squares) and beams -0 and -0* (circles), respectively.

Fig. 6
Fig. 6

Field dependence of the primary (filled symbols, left axis) and the secondary (open symbols, right axis) beam intensities in a normal two-beam coupling experiment performed at λ=690 nm on DMNPAA–PVK–ECZ–TNF for (a) s-polarized and (b) p-polarized light: beams +0 and +0* (squares) and beams -0 and -0* (circles), respectively.

Fig. 7
Fig. 7

Field dependence of the normalized diffraction efficiency η in degenerate four-wave mixing experiments performed at λ=633 nm on DMNPAA/PVK/ECZ/TNF for a p-polarized reading beam in (a) the normal readout geometry and (b) the crossed readout geometry: devices using a 150-nm-thick ITO electrode as the second contact (squares) and an 80-nm-thick ITO electrode as the second contact (circles), s-polarized writing beams (filled symbols) and p-polarized writing beams (open symbols). The dashed line indicates the expected field of maximum diffraction when the reflectivity at the polymer–ITO–glass interface is zero (see text). The field polarity was E<0.

Fig. 8
Fig. 8

Field dependence of the contrast factor m of the {+0*, -0*} grating in degenerate four-wave mixing experiments performed at λ=633 nm on DMNPAA–PVK–ECZ–TNF for p-polarized (filled squares) and s-polarized (open circles) beams for devices using a 150-nm-thick ITO electrode as the second contact. The field polarity was E<0.

Tables (2)

Tables Icon

Table 1 Calculation of Relevant Beam Intensities for λ=690 nm and λ=633 nm a

Tables Icon

Table 2 Tilt Angles Ψi Calculated from the External Angles from Snell’s Law and the Measured Refractive Index; Grating Periods Λi=λ/(2n)sin(αy-αx) Calculated from the Internal Angles; Grating Contrast Factors a mi for E=0 V/μm Calculated According to Eq. (1); and Light Intensity b Ii=(Ix+Iy) for the Six Coexisting PR Gratings c

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ESC=m sˆM(I)E0 sin Ψ1+(iE0 sin Ψ)/Eqexp[i(Kabr+ξ)]+c.c.,
m=C 2[IaIb]1/2Ia+Ib,Eq4πeNA|Kab|0,|Kab| =2πΛab.
Γ{+0,-0}(E)=1d cos α+0 lnI+0(E, II)I+0(E=0, II)-cos α-0 lnI-0(E, II)I-0(E=0, II).
Γ{±0,±0*}(E)=1d  cos α±0 lnI±0(E, II)I±0(E=0, II)-cos α±0* lnI±0*(E, I)I±0*(E=0, I).
Γ{±0,±0*}(E)=cos α±0d lnI±0(E, II)I±0(E=0, II)-lnI±0*(E, I)AI±0(E, II).
Γ{±0,±0*}(E)-cos α±0d lnI±0*(E, I)AI±0(E, II).
Δnp/Δns=cos(α2-α1){cos α1 cos α2+[(C/A-1)sin(α1+α2)tan(π-Ψ)]/2+C/A sin α1 sin α2},
Δntot=Δn{+0,-0}+Δn{+0*,-0*}1.66Δn{+0,-0}.
Δn(E, I)=Δn0(E)-C1(E)exp[C2(E)I],

Metrics