Abstract

Rigorous coupled-wave reflection grating analysis and Kukhtarev’s equations have been solved in the time domain to determine the optical intensity, electron density, and dielectric modulation in BaTiO3. A novel Green’s-function approach has been developed to analyze Kukhtarev’s material equations. The Green’s-function approach allowed Kukhtarev’s equations to be reduced to a matrix form, from which the electron density could be obtained. A temporal state variable matrix equation was also developed from which full time-dependent solutions of Kukhtarev’s equations could be determined. An electron balance equation was developed from which the different terms in Kukhtarev’s equation could be studied and compared. Numerical simulations were carried out that showed the growth of a photorefractive BaTiO3 reflection grating. The simulation showed that an asymmetric, blazelike pattern resulted for the dielectric modulation. The blazelike pattern was shown to arise from spatial differentiation of a cusplike shape that the electron-density function assumed for its solution.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription