Abstract

We review recent investigations of nonlinear carrier transport and related optical nonlinearities in GaAs and InP crystals for the case in which photoexcited carriers are nonuniformly heated by a strong external electric field and are redistributed in a spatially nonuniform internal electric field. We simulated the nonequilibrium carrier and internal field spatial evolution in picosecond and nanosecond time domains and estimated criteria for bipolar high-field Gunn-domain grating formation in dc and ac fields. The coexisting refractive-index modulation mechanisms for free-carrier and electro-optic nonlinearities are analyzed for various external field strengths, grating periods, and excitation levels, thus providing conditions for an efficient and fast electro-optic refractive-index modulation by the transient Gunn-domain grating. Comparison of the experimentally observed enhancement of light’s self-diffraction efficiency with numerical calculations has confirmed that the nonresonant electro-optic Gunn-domain-based nonlinearity may exceed the free-carrier nonlinearity.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Miller, D. A. Miller, and S. D. Smith, “Dynamic nonlinear optical processes in semiconductors,” Adv. Phys. 30, 797 (1981).
    [CrossRef]
  2. R. K. Jain and M. B. Klein, “Degenerate four-wave mixing in semiconductors,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 307.
  3. B. Deveaud, “Ultrafast dynamics and nonlinear optical properties of semiconductor QW and SL,” in Optical Properties of Semiconductors, G. Martinez, ed. (Kluwer, Dordrecht, The Netherlands, 1993), p. 119.
  4. M. A. Glass and E. F. Shubert, eds., special issue on charge transport nonlinearities, Opt. Quantum Electron.22, S1–S16 (1990).
    [CrossRef]
  5. P. Gunter and J. P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vols. I and II.
  6. A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Bogges, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1 μm,” IEEE J. Quantum Electron. 24, 289 (1988).
    [CrossRef]
  7. L. Disdier and G. Roosen, “Nanosecond four-wave mixing in semi-insulating GaAs,” Opt. Commun. 88, 559 (1992).
    [CrossRef]
  8. G. Montemezzani, P. Rogin, M. Zgonik, and P. Gunter, “Interband photorefractive effects: theory and experiments in KNbO3,” Phys. Rev. B 49, 2484 (1994).
    [CrossRef]
  9. W. A. Schroeder, T. S. Stark, M. D. Dawson, T. F. Boggess, A. L. Smirl, and G. C. Valley, “Picosecond separation and measurements of coexisting photorefractive bound electrons, and free-carrier grating dynamics in GaAs,” Opt. Lett. 16, 159 (1991).
    [PubMed]
  10. K. Jarašiu̅nas, P. Delaye, and G. Roosen, “Optical nonlinearities and carrier transport in GaAs:EL2 at high excitation levels,” Phys. Status Solidi B 175, 445 (1993).
    [CrossRef]
  11. A. Partovi and E. M. Garmire, “Band-edge photorefractivity in semiconductors: theory and experiment,” J. Appl. Phys. 69, 6885 (1991).
    [CrossRef]
  12. Q. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, “Photorefractive quantum wells: transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626 (1992).
    [CrossRef]
  13. L. Subačius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu̅nas, “Enhancement of light diffraction efficiency in semiconductors by mw electric field: experiment and calculations,” in International Conference on Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics, S. V. Svechnikov and M. Ya. Valakh, eds., Proc. SPIE2648, 207 (1995).
    [CrossRef]
  14. K. Jarašiu̅nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Subačius, and G. Valušis, “Hot carrier dynamics and light diffraction in non-uniform electric field: experiment and modeling,” Lith. Phys. J. 35, 426 (1995).
  15. L. Subačius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu̅nas, “Light diffraction on Gunn-domain gratings,” Phys. Rev. B 55, 12844 (1997).
    [CrossRef]
  16. Q. Wang, R. M. Brubaker, and D. D. Nolte, “Photorefractive phase shift induced by hot electron transport: multiple-quantum-well structures,” J. Opt. Soc. Am. B 11, 1773 (1994).
    [CrossRef]
  17. R. M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Nonlocal photorefractive screening from hot electron velocity saturation in semiconductors,” Phys. Rev. Lett. 77, 4249 (1996).
    [CrossRef] [PubMed]
  18. M. Segev, B. Collings, and D. Abraham, “Photorefractive Gunn effect,” Phys. Rev. Lett. 76, 3798 (1996).
    [CrossRef] [PubMed]
  19. V. Gružinskis, E. Starikov, and P. Shiktorov, “Conservation equations for hot carriers. I. Transport models,” Solid-State Electron. 36, 1055 (1993).
    [CrossRef]
  20. G. C. Valley, T. F. Boggess, J. Dubard, and A. L. Smirl, “Picosecond pump-probe technique to measure deep-level, free carrier, and two-photon cross sections in GaAs,” J. Appl. Phys. 66, 2407 (1989).
    [CrossRef]
  21. M. Shur, GaAs Devices and Circuits (Plenum, New York, 1987).
  22. J. Eichler, P. Gunter, and D. Pohl, Light-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
  23. J. Vaitkus, K. Jarašiu̅nas, E. Gaubas, L. Jonikas, R. Pranaitis, and L. Subačius, “The diffraction of light by transient gratings in crystalline, ion-implanted, and amorphous silicon,” IEEE J. Quantum Electron. QE-22, 1298 (1986).
    [CrossRef]
  24. J. Vaitkus, E. Starikovas, L. Subačius, and K. Jarašiu̅nas, “Field dependencies of the efficiency of light self-diffraction and of diffusion coefficients in GaAs and Si,” Litov. Fiz. Sb. 30, 336 (1990).
  25. J. Vaitkus, A. Matulionis, L. Subačius, and K. Jarašiu̅nas, “Direct optical measurements and analysis of hot carrier diffusion in GaAs and Si,” in 19th International Conference on the Physics of Semiconductors, W. Zawadzki, ed. (Institute of Physics, Polish Academy of Sciences, Warsaw, 1988), Vol. 2, p. 1447.
  26. J. C. Fabre, J. M. C. Jonathan, and G. Roosen, “4̅3m photorefractive materials in energy transfer experiments,” Opt. Commun. 65, 257 (1988).
    [CrossRef]
  27. R. Orlowski, L. A. Boatner, and E. Kratzig, “Photorefractive effects in the cubic phase of potassium tantalate-niobate,” Opt. Commun. 35, 45 (1980).
    [CrossRef]
  28. K. Jarašiu̅nas and H. J. Gerritsen, “Ambipolar diffusion measurements in semiconductors using nonlinear transient gratings,” Appl. Phys. Lett. 33, 190 (1978).
    [CrossRef]
  29. V. Gruzhinskis, E. Starikov, P. Shiktorov, L. Reggiani, and L. Varani, “Linear and nonlinear analysis of microwave power generation in submicrometer n+nn+ InP diodes,” J. Appl. Phys. 76, 5260 (1994).
    [CrossRef]
  30. P. Shiktorov, V. Gružinskis, E. Starikov, L. Reggiani, and L. Varani, “Noise temperature of n+nn+ GaAs structures,” Phys. Rev. B 54, 8821 (1996).
    [CrossRef]

1997 (1)

L. Subačius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu̅nas, “Light diffraction on Gunn-domain gratings,” Phys. Rev. B 55, 12844 (1997).
[CrossRef]

1996 (3)

P. Shiktorov, V. Gružinskis, E. Starikov, L. Reggiani, and L. Varani, “Noise temperature of n+nn+ GaAs structures,” Phys. Rev. B 54, 8821 (1996).
[CrossRef]

R. M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Nonlocal photorefractive screening from hot electron velocity saturation in semiconductors,” Phys. Rev. Lett. 77, 4249 (1996).
[CrossRef] [PubMed]

M. Segev, B. Collings, and D. Abraham, “Photorefractive Gunn effect,” Phys. Rev. Lett. 76, 3798 (1996).
[CrossRef] [PubMed]

1995 (1)

K. Jarašiu̅nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Subačius, and G. Valušis, “Hot carrier dynamics and light diffraction in non-uniform electric field: experiment and modeling,” Lith. Phys. J. 35, 426 (1995).

1994 (3)

V. Gruzhinskis, E. Starikov, P. Shiktorov, L. Reggiani, and L. Varani, “Linear and nonlinear analysis of microwave power generation in submicrometer n+nn+ InP diodes,” J. Appl. Phys. 76, 5260 (1994).
[CrossRef]

Q. Wang, R. M. Brubaker, and D. D. Nolte, “Photorefractive phase shift induced by hot electron transport: multiple-quantum-well structures,” J. Opt. Soc. Am. B 11, 1773 (1994).
[CrossRef]

G. Montemezzani, P. Rogin, M. Zgonik, and P. Gunter, “Interband photorefractive effects: theory and experiments in KNbO3,” Phys. Rev. B 49, 2484 (1994).
[CrossRef]

1993 (2)

K. Jarašiu̅nas, P. Delaye, and G. Roosen, “Optical nonlinearities and carrier transport in GaAs:EL2 at high excitation levels,” Phys. Status Solidi B 175, 445 (1993).
[CrossRef]

V. Gružinskis, E. Starikov, and P. Shiktorov, “Conservation equations for hot carriers. I. Transport models,” Solid-State Electron. 36, 1055 (1993).
[CrossRef]

1992 (2)

1991 (2)

1990 (1)

J. Vaitkus, E. Starikovas, L. Subačius, and K. Jarašiu̅nas, “Field dependencies of the efficiency of light self-diffraction and of diffusion coefficients in GaAs and Si,” Litov. Fiz. Sb. 30, 336 (1990).

1989 (1)

G. C. Valley, T. F. Boggess, J. Dubard, and A. L. Smirl, “Picosecond pump-probe technique to measure deep-level, free carrier, and two-photon cross sections in GaAs,” J. Appl. Phys. 66, 2407 (1989).
[CrossRef]

1988 (2)

J. C. Fabre, J. M. C. Jonathan, and G. Roosen, “4̅3m photorefractive materials in energy transfer experiments,” Opt. Commun. 65, 257 (1988).
[CrossRef]

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Bogges, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1 μm,” IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

1986 (1)

J. Vaitkus, K. Jarašiu̅nas, E. Gaubas, L. Jonikas, R. Pranaitis, and L. Subačius, “The diffraction of light by transient gratings in crystalline, ion-implanted, and amorphous silicon,” IEEE J. Quantum Electron. QE-22, 1298 (1986).
[CrossRef]

1981 (1)

A. Miller, D. A. Miller, and S. D. Smith, “Dynamic nonlinear optical processes in semiconductors,” Adv. Phys. 30, 797 (1981).
[CrossRef]

1980 (1)

R. Orlowski, L. A. Boatner, and E. Kratzig, “Photorefractive effects in the cubic phase of potassium tantalate-niobate,” Opt. Commun. 35, 45 (1980).
[CrossRef]

1978 (1)

K. Jarašiu̅nas and H. J. Gerritsen, “Ambipolar diffusion measurements in semiconductors using nonlinear transient gratings,” Appl. Phys. Lett. 33, 190 (1978).
[CrossRef]

Abraham, D.

M. Segev, B. Collings, and D. Abraham, “Photorefractive Gunn effect,” Phys. Rev. Lett. 76, 3798 (1996).
[CrossRef] [PubMed]

Boatner, L. A.

R. Orlowski, L. A. Boatner, and E. Kratzig, “Photorefractive effects in the cubic phase of potassium tantalate-niobate,” Opt. Commun. 35, 45 (1980).
[CrossRef]

Bogges, T. F.

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Bogges, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1 μm,” IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

Boggess, T. F.

W. A. Schroeder, T. S. Stark, M. D. Dawson, T. F. Boggess, A. L. Smirl, and G. C. Valley, “Picosecond separation and measurements of coexisting photorefractive bound electrons, and free-carrier grating dynamics in GaAs,” Opt. Lett. 16, 159 (1991).
[PubMed]

G. C. Valley, T. F. Boggess, J. Dubard, and A. L. Smirl, “Picosecond pump-probe technique to measure deep-level, free carrier, and two-photon cross sections in GaAs,” J. Appl. Phys. 66, 2407 (1989).
[CrossRef]

Bohnert, K. M.

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Bogges, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1 μm,” IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

Brubaker, R. M.

Collings, B.

M. Segev, B. Collings, and D. Abraham, “Photorefractive Gunn effect,” Phys. Rev. Lett. 76, 3798 (1996).
[CrossRef] [PubMed]

Dawson, M. D.

Delaye, P.

K. Jarašiu̅nas, P. Delaye, and G. Roosen, “Optical nonlinearities and carrier transport in GaAs:EL2 at high excitation levels,” Phys. Status Solidi B 175, 445 (1993).
[CrossRef]

Deveaud, B.

B. Deveaud, “Ultrafast dynamics and nonlinear optical properties of semiconductor QW and SL,” in Optical Properties of Semiconductors, G. Martinez, ed. (Kluwer, Dordrecht, The Netherlands, 1993), p. 119.

Disdier, L.

L. Disdier and G. Roosen, “Nanosecond four-wave mixing in semi-insulating GaAs,” Opt. Commun. 88, 559 (1992).
[CrossRef]

Dubard, J.

G. C. Valley, T. F. Boggess, J. Dubard, and A. L. Smirl, “Picosecond pump-probe technique to measure deep-level, free carrier, and two-photon cross sections in GaAs,” J. Appl. Phys. 66, 2407 (1989).
[CrossRef]

Eichler, J.

J. Eichler, P. Gunter, and D. Pohl, Light-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).

Fabre, J. C.

J. C. Fabre, J. M. C. Jonathan, and G. Roosen, “4̅3m photorefractive materials in energy transfer experiments,” Opt. Commun. 65, 257 (1988).
[CrossRef]

Garmire, E. M.

A. Partovi and E. M. Garmire, “Band-edge photorefractivity in semiconductors: theory and experiment,” J. Appl. Phys. 69, 6885 (1991).
[CrossRef]

Gaubas, E.

J. Vaitkus, K. Jarašiu̅nas, E. Gaubas, L. Jonikas, R. Pranaitis, and L. Subačius, “The diffraction of light by transient gratings in crystalline, ion-implanted, and amorphous silicon,” IEEE J. Quantum Electron. QE-22, 1298 (1986).
[CrossRef]

Gerritsen, H. J.

K. Jarašiu̅nas and H. J. Gerritsen, “Ambipolar diffusion measurements in semiconductors using nonlinear transient gratings,” Appl. Phys. Lett. 33, 190 (1978).
[CrossRef]

Gruzhinskis, V.

V. Gruzhinskis, E. Starikov, P. Shiktorov, L. Reggiani, and L. Varani, “Linear and nonlinear analysis of microwave power generation in submicrometer n+nn+ InP diodes,” J. Appl. Phys. 76, 5260 (1994).
[CrossRef]

Gružinskis, V.

L. Subačius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu̅nas, “Light diffraction on Gunn-domain gratings,” Phys. Rev. B 55, 12844 (1997).
[CrossRef]

P. Shiktorov, V. Gružinskis, E. Starikov, L. Reggiani, and L. Varani, “Noise temperature of n+nn+ GaAs structures,” Phys. Rev. B 54, 8821 (1996).
[CrossRef]

K. Jarašiu̅nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Subačius, and G. Valušis, “Hot carrier dynamics and light diffraction in non-uniform electric field: experiment and modeling,” Lith. Phys. J. 35, 426 (1995).

V. Gružinskis, E. Starikov, and P. Shiktorov, “Conservation equations for hot carriers. I. Transport models,” Solid-State Electron. 36, 1055 (1993).
[CrossRef]

L. Subačius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu̅nas, “Enhancement of light diffraction efficiency in semiconductors by mw electric field: experiment and calculations,” in International Conference on Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics, S. V. Svechnikov and M. Ya. Valakh, eds., Proc. SPIE2648, 207 (1995).
[CrossRef]

Gunter, P.

G. Montemezzani, P. Rogin, M. Zgonik, and P. Gunter, “Interband photorefractive effects: theory and experiments in KNbO3,” Phys. Rev. B 49, 2484 (1994).
[CrossRef]

J. Eichler, P. Gunter, and D. Pohl, Light-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).

Jain, R. K.

R. K. Jain and M. B. Klein, “Degenerate four-wave mixing in semiconductors,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 307.

Jarašiu¯nas, K.

L. Subačius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu̅nas, “Light diffraction on Gunn-domain gratings,” Phys. Rev. B 55, 12844 (1997).
[CrossRef]

K. Jarašiu̅nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Subačius, and G. Valušis, “Hot carrier dynamics and light diffraction in non-uniform electric field: experiment and modeling,” Lith. Phys. J. 35, 426 (1995).

K. Jarašiu̅nas, P. Delaye, and G. Roosen, “Optical nonlinearities and carrier transport in GaAs:EL2 at high excitation levels,” Phys. Status Solidi B 175, 445 (1993).
[CrossRef]

J. Vaitkus, E. Starikovas, L. Subačius, and K. Jarašiu̅nas, “Field dependencies of the efficiency of light self-diffraction and of diffusion coefficients in GaAs and Si,” Litov. Fiz. Sb. 30, 336 (1990).

J. Vaitkus, K. Jarašiu̅nas, E. Gaubas, L. Jonikas, R. Pranaitis, and L. Subačius, “The diffraction of light by transient gratings in crystalline, ion-implanted, and amorphous silicon,” IEEE J. Quantum Electron. QE-22, 1298 (1986).
[CrossRef]

K. Jarašiu̅nas and H. J. Gerritsen, “Ambipolar diffusion measurements in semiconductors using nonlinear transient gratings,” Appl. Phys. Lett. 33, 190 (1978).
[CrossRef]

J. Vaitkus, A. Matulionis, L. Subačius, and K. Jarašiu̅nas, “Direct optical measurements and analysis of hot carrier diffusion in GaAs and Si,” in 19th International Conference on the Physics of Semiconductors, W. Zawadzki, ed. (Institute of Physics, Polish Academy of Sciences, Warsaw, 1988), Vol. 2, p. 1447.

L. Subačius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu̅nas, “Enhancement of light diffraction efficiency in semiconductors by mw electric field: experiment and calculations,” in International Conference on Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics, S. V. Svechnikov and M. Ya. Valakh, eds., Proc. SPIE2648, 207 (1995).
[CrossRef]

Jonathan, J. M. C.

J. C. Fabre, J. M. C. Jonathan, and G. Roosen, “4̅3m photorefractive materials in energy transfer experiments,” Opt. Commun. 65, 257 (1988).
[CrossRef]

Jonikas, L.

J. Vaitkus, K. Jarašiu̅nas, E. Gaubas, L. Jonikas, R. Pranaitis, and L. Subačius, “The diffraction of light by transient gratings in crystalline, ion-implanted, and amorphous silicon,” IEEE J. Quantum Electron. QE-22, 1298 (1986).
[CrossRef]

Klein, M. B.

R. K. Jain and M. B. Klein, “Degenerate four-wave mixing in semiconductors,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 307.

Kratzig, E.

R. Orlowski, L. A. Boatner, and E. Kratzig, “Photorefractive effects in the cubic phase of potassium tantalate-niobate,” Opt. Commun. 35, 45 (1980).
[CrossRef]

Matulionis, A.

J. Vaitkus, A. Matulionis, L. Subačius, and K. Jarašiu̅nas, “Direct optical measurements and analysis of hot carrier diffusion in GaAs and Si,” in 19th International Conference on the Physics of Semiconductors, W. Zawadzki, ed. (Institute of Physics, Polish Academy of Sciences, Warsaw, 1988), Vol. 2, p. 1447.

Melloch, M. R.

R. M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Nonlocal photorefractive screening from hot electron velocity saturation in semiconductors,” Phys. Rev. Lett. 77, 4249 (1996).
[CrossRef] [PubMed]

Q. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, “Photorefractive quantum wells: transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626 (1992).
[CrossRef]

Miller, A.

A. Miller, D. A. Miller, and S. D. Smith, “Dynamic nonlinear optical processes in semiconductors,” Adv. Phys. 30, 797 (1981).
[CrossRef]

Miller, D. A.

A. Miller, D. A. Miller, and S. D. Smith, “Dynamic nonlinear optical processes in semiconductors,” Adv. Phys. 30, 797 (1981).
[CrossRef]

Montemezzani, G.

G. Montemezzani, P. Rogin, M. Zgonik, and P. Gunter, “Interband photorefractive effects: theory and experiments in KNbO3,” Phys. Rev. B 49, 2484 (1994).
[CrossRef]

Nolte, D. D.

Orlowski, R.

R. Orlowski, L. A. Boatner, and E. Kratzig, “Photorefractive effects in the cubic phase of potassium tantalate-niobate,” Opt. Commun. 35, 45 (1980).
[CrossRef]

Partovi, A.

A. Partovi and E. M. Garmire, “Band-edge photorefractivity in semiconductors: theory and experiment,” J. Appl. Phys. 69, 6885 (1991).
[CrossRef]

Pohl, D.

J. Eichler, P. Gunter, and D. Pohl, Light-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).

Pranaitis, R.

J. Vaitkus, K. Jarašiu̅nas, E. Gaubas, L. Jonikas, R. Pranaitis, and L. Subačius, “The diffraction of light by transient gratings in crystalline, ion-implanted, and amorphous silicon,” IEEE J. Quantum Electron. QE-22, 1298 (1986).
[CrossRef]

Reggiani, L.

P. Shiktorov, V. Gružinskis, E. Starikov, L. Reggiani, and L. Varani, “Noise temperature of n+nn+ GaAs structures,” Phys. Rev. B 54, 8821 (1996).
[CrossRef]

V. Gruzhinskis, E. Starikov, P. Shiktorov, L. Reggiani, and L. Varani, “Linear and nonlinear analysis of microwave power generation in submicrometer n+nn+ InP diodes,” J. Appl. Phys. 76, 5260 (1994).
[CrossRef]

Rogin, P.

G. Montemezzani, P. Rogin, M. Zgonik, and P. Gunter, “Interband photorefractive effects: theory and experiments in KNbO3,” Phys. Rev. B 49, 2484 (1994).
[CrossRef]

Roosen, G.

K. Jarašiu̅nas, P. Delaye, and G. Roosen, “Optical nonlinearities and carrier transport in GaAs:EL2 at high excitation levels,” Phys. Status Solidi B 175, 445 (1993).
[CrossRef]

L. Disdier and G. Roosen, “Nanosecond four-wave mixing in semi-insulating GaAs,” Opt. Commun. 88, 559 (1992).
[CrossRef]

J. C. Fabre, J. M. C. Jonathan, and G. Roosen, “4̅3m photorefractive materials in energy transfer experiments,” Opt. Commun. 65, 257 (1988).
[CrossRef]

Schroeder, W. A.

Segev, M.

M. Segev, B. Collings, and D. Abraham, “Photorefractive Gunn effect,” Phys. Rev. Lett. 76, 3798 (1996).
[CrossRef] [PubMed]

Shiktorov, P.

L. Subačius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu̅nas, “Light diffraction on Gunn-domain gratings,” Phys. Rev. B 55, 12844 (1997).
[CrossRef]

P. Shiktorov, V. Gružinskis, E. Starikov, L. Reggiani, and L. Varani, “Noise temperature of n+nn+ GaAs structures,” Phys. Rev. B 54, 8821 (1996).
[CrossRef]

K. Jarašiu̅nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Subačius, and G. Valušis, “Hot carrier dynamics and light diffraction in non-uniform electric field: experiment and modeling,” Lith. Phys. J. 35, 426 (1995).

V. Gruzhinskis, E. Starikov, P. Shiktorov, L. Reggiani, and L. Varani, “Linear and nonlinear analysis of microwave power generation in submicrometer n+nn+ InP diodes,” J. Appl. Phys. 76, 5260 (1994).
[CrossRef]

V. Gružinskis, E. Starikov, and P. Shiktorov, “Conservation equations for hot carriers. I. Transport models,” Solid-State Electron. 36, 1055 (1993).
[CrossRef]

L. Subačius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu̅nas, “Enhancement of light diffraction efficiency in semiconductors by mw electric field: experiment and calculations,” in International Conference on Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics, S. V. Svechnikov and M. Ya. Valakh, eds., Proc. SPIE2648, 207 (1995).
[CrossRef]

Shur, M.

M. Shur, GaAs Devices and Circuits (Plenum, New York, 1987).

Smirl, A. L.

W. A. Schroeder, T. S. Stark, M. D. Dawson, T. F. Boggess, A. L. Smirl, and G. C. Valley, “Picosecond separation and measurements of coexisting photorefractive bound electrons, and free-carrier grating dynamics in GaAs,” Opt. Lett. 16, 159 (1991).
[PubMed]

G. C. Valley, T. F. Boggess, J. Dubard, and A. L. Smirl, “Picosecond pump-probe technique to measure deep-level, free carrier, and two-photon cross sections in GaAs,” J. Appl. Phys. 66, 2407 (1989).
[CrossRef]

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Bogges, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1 μm,” IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

Smith, S. D.

A. Miller, D. A. Miller, and S. D. Smith, “Dynamic nonlinear optical processes in semiconductors,” Adv. Phys. 30, 797 (1981).
[CrossRef]

Starikov, E.

L. Subačius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu̅nas, “Light diffraction on Gunn-domain gratings,” Phys. Rev. B 55, 12844 (1997).
[CrossRef]

P. Shiktorov, V. Gružinskis, E. Starikov, L. Reggiani, and L. Varani, “Noise temperature of n+nn+ GaAs structures,” Phys. Rev. B 54, 8821 (1996).
[CrossRef]

K. Jarašiu̅nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Subačius, and G. Valušis, “Hot carrier dynamics and light diffraction in non-uniform electric field: experiment and modeling,” Lith. Phys. J. 35, 426 (1995).

V. Gruzhinskis, E. Starikov, P. Shiktorov, L. Reggiani, and L. Varani, “Linear and nonlinear analysis of microwave power generation in submicrometer n+nn+ InP diodes,” J. Appl. Phys. 76, 5260 (1994).
[CrossRef]

V. Gružinskis, E. Starikov, and P. Shiktorov, “Conservation equations for hot carriers. I. Transport models,” Solid-State Electron. 36, 1055 (1993).
[CrossRef]

L. Subačius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu̅nas, “Enhancement of light diffraction efficiency in semiconductors by mw electric field: experiment and calculations,” in International Conference on Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics, S. V. Svechnikov and M. Ya. Valakh, eds., Proc. SPIE2648, 207 (1995).
[CrossRef]

Starikovas, E.

J. Vaitkus, E. Starikovas, L. Subačius, and K. Jarašiu̅nas, “Field dependencies of the efficiency of light self-diffraction and of diffusion coefficients in GaAs and Si,” Litov. Fiz. Sb. 30, 336 (1990).

Stark, T. S.

Subacius, L.

L. Subačius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu̅nas, “Light diffraction on Gunn-domain gratings,” Phys. Rev. B 55, 12844 (1997).
[CrossRef]

K. Jarašiu̅nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Subačius, and G. Valušis, “Hot carrier dynamics and light diffraction in non-uniform electric field: experiment and modeling,” Lith. Phys. J. 35, 426 (1995).

J. Vaitkus, E. Starikovas, L. Subačius, and K. Jarašiu̅nas, “Field dependencies of the efficiency of light self-diffraction and of diffusion coefficients in GaAs and Si,” Litov. Fiz. Sb. 30, 336 (1990).

J. Vaitkus, K. Jarašiu̅nas, E. Gaubas, L. Jonikas, R. Pranaitis, and L. Subačius, “The diffraction of light by transient gratings in crystalline, ion-implanted, and amorphous silicon,” IEEE J. Quantum Electron. QE-22, 1298 (1986).
[CrossRef]

J. Vaitkus, A. Matulionis, L. Subačius, and K. Jarašiu̅nas, “Direct optical measurements and analysis of hot carrier diffusion in GaAs and Si,” in 19th International Conference on the Physics of Semiconductors, W. Zawadzki, ed. (Institute of Physics, Polish Academy of Sciences, Warsaw, 1988), Vol. 2, p. 1447.

L. Subačius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu̅nas, “Enhancement of light diffraction efficiency in semiconductors by mw electric field: experiment and calculations,” in International Conference on Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics, S. V. Svechnikov and M. Ya. Valakh, eds., Proc. SPIE2648, 207 (1995).
[CrossRef]

Vaitkus, J.

J. Vaitkus, E. Starikovas, L. Subačius, and K. Jarašiu̅nas, “Field dependencies of the efficiency of light self-diffraction and of diffusion coefficients in GaAs and Si,” Litov. Fiz. Sb. 30, 336 (1990).

J. Vaitkus, K. Jarašiu̅nas, E. Gaubas, L. Jonikas, R. Pranaitis, and L. Subačius, “The diffraction of light by transient gratings in crystalline, ion-implanted, and amorphous silicon,” IEEE J. Quantum Electron. QE-22, 1298 (1986).
[CrossRef]

J. Vaitkus, A. Matulionis, L. Subačius, and K. Jarašiu̅nas, “Direct optical measurements and analysis of hot carrier diffusion in GaAs and Si,” in 19th International Conference on the Physics of Semiconductors, W. Zawadzki, ed. (Institute of Physics, Polish Academy of Sciences, Warsaw, 1988), Vol. 2, p. 1447.

Valley, G. C.

W. A. Schroeder, T. S. Stark, M. D. Dawson, T. F. Boggess, A. L. Smirl, and G. C. Valley, “Picosecond separation and measurements of coexisting photorefractive bound electrons, and free-carrier grating dynamics in GaAs,” Opt. Lett. 16, 159 (1991).
[PubMed]

G. C. Valley, T. F. Boggess, J. Dubard, and A. L. Smirl, “Picosecond pump-probe technique to measure deep-level, free carrier, and two-photon cross sections in GaAs,” J. Appl. Phys. 66, 2407 (1989).
[CrossRef]

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Bogges, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1 μm,” IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

Valušis, G.

K. Jarašiu̅nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Subačius, and G. Valušis, “Hot carrier dynamics and light diffraction in non-uniform electric field: experiment and modeling,” Lith. Phys. J. 35, 426 (1995).

Varani, L.

P. Shiktorov, V. Gružinskis, E. Starikov, L. Reggiani, and L. Varani, “Noise temperature of n+nn+ GaAs structures,” Phys. Rev. B 54, 8821 (1996).
[CrossRef]

V. Gruzhinskis, E. Starikov, P. Shiktorov, L. Reggiani, and L. Varani, “Linear and nonlinear analysis of microwave power generation in submicrometer n+nn+ InP diodes,” J. Appl. Phys. 76, 5260 (1994).
[CrossRef]

Wang, Q.

Wang, Q. N.

R. M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Nonlocal photorefractive screening from hot electron velocity saturation in semiconductors,” Phys. Rev. Lett. 77, 4249 (1996).
[CrossRef] [PubMed]

Zgonik, M.

G. Montemezzani, P. Rogin, M. Zgonik, and P. Gunter, “Interband photorefractive effects: theory and experiments in KNbO3,” Phys. Rev. B 49, 2484 (1994).
[CrossRef]

Adv. Phys. (1)

A. Miller, D. A. Miller, and S. D. Smith, “Dynamic nonlinear optical processes in semiconductors,” Adv. Phys. 30, 797 (1981).
[CrossRef]

Appl. Phys. Lett. (1)

K. Jarašiu̅nas and H. J. Gerritsen, “Ambipolar diffusion measurements in semiconductors using nonlinear transient gratings,” Appl. Phys. Lett. 33, 190 (1978).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. Vaitkus, K. Jarašiu̅nas, E. Gaubas, L. Jonikas, R. Pranaitis, and L. Subačius, “The diffraction of light by transient gratings in crystalline, ion-implanted, and amorphous silicon,” IEEE J. Quantum Electron. QE-22, 1298 (1986).
[CrossRef]

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Bogges, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1 μm,” IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

J. Appl. Phys. (3)

A. Partovi and E. M. Garmire, “Band-edge photorefractivity in semiconductors: theory and experiment,” J. Appl. Phys. 69, 6885 (1991).
[CrossRef]

G. C. Valley, T. F. Boggess, J. Dubard, and A. L. Smirl, “Picosecond pump-probe technique to measure deep-level, free carrier, and two-photon cross sections in GaAs,” J. Appl. Phys. 66, 2407 (1989).
[CrossRef]

V. Gruzhinskis, E. Starikov, P. Shiktorov, L. Reggiani, and L. Varani, “Linear and nonlinear analysis of microwave power generation in submicrometer n+nn+ InP diodes,” J. Appl. Phys. 76, 5260 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

Lith. Phys. J. (1)

K. Jarašiu̅nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Subačius, and G. Valušis, “Hot carrier dynamics and light diffraction in non-uniform electric field: experiment and modeling,” Lith. Phys. J. 35, 426 (1995).

Litov. Fiz. Sb. (1)

J. Vaitkus, E. Starikovas, L. Subačius, and K. Jarašiu̅nas, “Field dependencies of the efficiency of light self-diffraction and of diffusion coefficients in GaAs and Si,” Litov. Fiz. Sb. 30, 336 (1990).

Opt. Commun. (3)

J. C. Fabre, J. M. C. Jonathan, and G. Roosen, “4̅3m photorefractive materials in energy transfer experiments,” Opt. Commun. 65, 257 (1988).
[CrossRef]

R. Orlowski, L. A. Boatner, and E. Kratzig, “Photorefractive effects in the cubic phase of potassium tantalate-niobate,” Opt. Commun. 35, 45 (1980).
[CrossRef]

L. Disdier and G. Roosen, “Nanosecond four-wave mixing in semi-insulating GaAs,” Opt. Commun. 88, 559 (1992).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (3)

G. Montemezzani, P. Rogin, M. Zgonik, and P. Gunter, “Interband photorefractive effects: theory and experiments in KNbO3,” Phys. Rev. B 49, 2484 (1994).
[CrossRef]

L. Subačius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu̅nas, “Light diffraction on Gunn-domain gratings,” Phys. Rev. B 55, 12844 (1997).
[CrossRef]

P. Shiktorov, V. Gružinskis, E. Starikov, L. Reggiani, and L. Varani, “Noise temperature of n+nn+ GaAs structures,” Phys. Rev. B 54, 8821 (1996).
[CrossRef]

Phys. Rev. Lett. (2)

R. M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Nonlocal photorefractive screening from hot electron velocity saturation in semiconductors,” Phys. Rev. Lett. 77, 4249 (1996).
[CrossRef] [PubMed]

M. Segev, B. Collings, and D. Abraham, “Photorefractive Gunn effect,” Phys. Rev. Lett. 76, 3798 (1996).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

K. Jarašiu̅nas, P. Delaye, and G. Roosen, “Optical nonlinearities and carrier transport in GaAs:EL2 at high excitation levels,” Phys. Status Solidi B 175, 445 (1993).
[CrossRef]

Solid-State Electron. (1)

V. Gružinskis, E. Starikov, and P. Shiktorov, “Conservation equations for hot carriers. I. Transport models,” Solid-State Electron. 36, 1055 (1993).
[CrossRef]

Other (8)

L. Subačius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu̅nas, “Enhancement of light diffraction efficiency in semiconductors by mw electric field: experiment and calculations,” in International Conference on Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics, S. V. Svechnikov and M. Ya. Valakh, eds., Proc. SPIE2648, 207 (1995).
[CrossRef]

R. K. Jain and M. B. Klein, “Degenerate four-wave mixing in semiconductors,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 307.

B. Deveaud, “Ultrafast dynamics and nonlinear optical properties of semiconductor QW and SL,” in Optical Properties of Semiconductors, G. Martinez, ed. (Kluwer, Dordrecht, The Netherlands, 1993), p. 119.

M. A. Glass and E. F. Shubert, eds., special issue on charge transport nonlinearities, Opt. Quantum Electron.22, S1–S16 (1990).
[CrossRef]

P. Gunter and J. P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vols. I and II.

J. Vaitkus, A. Matulionis, L. Subačius, and K. Jarašiu̅nas, “Direct optical measurements and analysis of hot carrier diffusion in GaAs and Si,” in 19th International Conference on the Physics of Semiconductors, W. Zawadzki, ed. (Institute of Physics, Polish Academy of Sciences, Warsaw, 1988), Vol. 2, p. 1447.

M. Shur, GaAs Devices and Circuits (Plenum, New York, 1987).

J. Eichler, P. Gunter, and D. Pohl, Light-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Mechanisms of EO refractive-index modulation ΔnEO and the corresponding experimental data of light phase modulation ΔΦ in GaAs: A, by quantum-confined excitons12; B, by the Gunn-effect14; C, by the Franz–Keldysh effect11; and D, by the Pockels effect.5

Fig. 2
Fig. 2

Field dependencies of drift velocity (left-hand scale) and hot-electron transport coefficients (right-hand scale), calculated by the Monte Carlo method for 1, n-GaAs; 2, n-InP; and 3, p-GaAs crystals.

Fig. 3
Fig. 3

Spatial distributions of light intensity I(x), internal electric field Eint, and electron concentration N in GaAs at external dc field Eext=8 kV/cm. Monte Carlo simulation results are given at t=1, 30; 2, 100; 3, 200; and 4, 400 ps.

Fig. 4
Fig. 4

Spatial distributions of light intensity I(x), internal electric field Eint, and electron concentration N, calculated in GaAs by the MCP (dotted curves) and EDD (solid curves) methods at t=650 ps and at t=700 ps coinciding with peaks of the mw field during the negative and the positive half-periods. Applied field amplitude, Em=8 kV/cm.

Fig. 5
Fig. 5

Spatial profiles of electron concentration N (left-hand scale) and internal electric field Eint (right-hand scale) in GaAs for (mw-field amplitudes) Em=1 kV/cm and Em=4 kV/cm. Carrier and field profiles are calculated at t=1, 100; 2, 300; and 3, 500 ps.

Fig. 6
Fig. 6

Experimental data (points) and calculations of normalized self-diffraction efficiency versus mw-field amplitude in GaAs (1–4) and InP (5–7) for grating spacing Λ=25 μm. Calculated lines 3 and 6, for EO gratings; 4 and 7, FC gratings. 1, 2, Measurement results for two different GaAs samples.

Fig. 7
Fig. 7

Spatial distributions of internal electric field Eint and electron concentration N in GaAs for applied field amplitude Em=8 kV/cm and grating spacing Λ=25 μm. Calculated results are (in nanoseconds): 1, 6; 2, 12; 3, 18; 4, 30; and 5, 36 after the laser pulse is switched on with τL=10 ns.

Fig. 8
Fig. 8

Temporal evolution of normalized refractive-index modulation by FC’s ΔnFC and by the quadratic EO effect ΔnFCE2 calculated for 1h, the first and 2h, the second spatial Fourier harmonics of Eint averaged over a mw period. Results are given for 1, GaAs and 2, InP. I(t) is the temporal shape of the laser pulse.

Fig. 9
Fig. 9

Experimental data (points) and calculations of normalized self-diffraction efficiency versus mw-field amplitude in InP for three grating periods Λ μm: 1, 2, 20; 3, 4, 30; and 5, 6, 35. Simulated lines (2, 4, 6), the quadratic EO effect.

Fig. 10
Fig. 10

Dependencies of light self-diffraction efficiency on grating period in GaAs for FC grating η1FC and for EO grating η1EOE4, calculated without (right-hand scale) and with (left-hand scale) an external mw field. Applied field amplitude Em, in kilovolts per centimeter: 1, 0; 2, 2; 3, 4; and 4, 8.

Fig. 11
Fig. 11

Same as Fig. 10, but for InP.

Tables (1)

Tables Icon

Table 1 Parameters for Monte Carlo Simulation

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

N/t=SnIN0(hν)-1+βI2(2hν)-1-γnNNi-γnpNP-(Nvn)/x,
P/t=SpINi(hν)-1+βI2(2hν)-1-γpPN0-γnpNP-(Pvp)/x,
Ni/t=SnIN0(hν)-1-SpINi(hν)-1-γnNNi-γpPN0,
E/x=(e/κ0κ)(P+Ni-N-NA-),
vn(x, t)=μn(E)E(x, t)-Dn(E)N(x, t)/x-Nτv(E)φ(E)/x,
vp(x, t)=μp(E)E(x, t)-Dp(E)P(x, t)/x,
ΔnFC(x)=-(e/2nκ0κω2)[ΔN(x)/m*(x)+ΔP(x)/mp].
ΔnEO=-n3gEO(κ-1)2κ02Eint2/2,
I1*=const.×02t[IA(t)Δn21h+IB(t)Δn22h]dt,
t+ve,h(p) x+qE(x, t) pxfe,h(p, x, t)
=Ge,h(p)-Re,h(p)+S^e,h[fe,h],
Sˆ[f]=-ν(p)f(p, x, t)+W(p, p)f(p, x, t)dp,
ν(p)=W(p, p)dp
E(x, t)x=eκκ0 [P(x, t)-N(x, t)+Ni(x, t)-NA-(x, t)],
N(x, t)=fe(p, x, t)dp,
P(x, t)=fh(p, x, t)dp
E(x, t)=E(0, t)+Eρ(x, t),
Eρ(x, t)=eκκ0 0x[P(x, t)-N(x, t)+Ni(x, t)-NA-(x, t)]dx
E(0, t)=1L U(t)-0LEρ(x, t)dx.
Nt=G-R-x (vN).
vt=eEm-1-vνv-v vx-1N x (nQv),
t=eEv-(-th)ν-v x-1N x (nQ).
v=μ(E)E-D(E) 1N Nx-τv(E) φ(E)x,
μ=em-1(E)τv(E)
D(E)=τv(E)δv20
φ(E)=δv20+½v2

Metrics