Abstract

Higher-order combinational gratings play an important role in explaining so-called nonlinear cross talk between index gratings in photorefractive media. We present what are to our knowledge the first experimental results showing the existence of a new, strong combinational index grating in a three-wave mixing experiment. We investigate the kinetics of the first harmonic, the second harmonic, and the new combinational index gratings. As a novel result, we demonstrate that the rise time of the new grating is strongly dependent on the intensity ratio of the incident recording beams. For low values of the intensity ratio the rise time is more than twice the value of the ordinary second-harmonic grating. Furthermore, it is shown that the steady-state strength of the new grating can be more than five times greater than that of ordinary second-harmonic gratings and can lead to substantial nonlinear cross talk on the first- and second-harmonic gratings.

[Optical Society of America ]

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J.-P. Huignard and B. Ledu , Collinear Bragg diffraction in photorefractive Bi 12 SiO 20 , Opt. Lett. OPLEDP 7 , 310 312 ( 1982
    [CrossRef] [PubMed]
  2. S. Fries , S. Bauschulte , E. Kra tzig , K. Ringhofer , and Y. Yacoby , Spatial frequency mixing in lithium niobate , Opt. Commun. OPCOB8 84 , 251 257 ( 1991
    [CrossRef]
  3. P. E. Andersen , P. Buchhave , P. M. Petersen , and M. V. Vasnetsov , Nonlinear combinations of gratings in Bi 12 SiO 20 : theory and experiments , J. Opt. Soc. Am. B JOBPDE 12 , 1422 1433 ( 1995
    [CrossRef]
  4. H. C. Pedersen , P. E. Andersen , P. M. Petersen , and P. M. Johansen , Theory of nonlinear multiple-grating interaction in diffusion-dominated photorefractive media , J. Opt. Soc. Am. B JOBPDE 13 , 2569 2579 ( 1996
    [CrossRef]
  5. P. E. Andersen , P. M. Petersen , and P. Buchhave , Nonlinear combinations of gratings in drift-dominated recording in Bi 12 SiO 20 , J. Opt. Soc. Am. B JOBPDE 12 , 2453 2462 ( 1995
    [CrossRef]
  6. J. F. Heanue , M. C. Bashaw , and L. Hesselink , Volume holographic storage and retrieval of digital data , Science SCIEAS 265 , 749 752 ( 1994
    [CrossRef] [PubMed]
  7. P. Gu nter , Holography, coherent light amplification and optical phase conjugation with photorefractive materials , Phys. Rep. PRPLCM 93 , 199 299 ( 1982
    [CrossRef]
  8. Ph. Refre gier , L. Solymar , H. Rajbenbach , and J.-P. Huignard , Two-beam coupling in photorefractive Bi 12 SiO 20 crystals with moving grating: theory and experiments , J. Appl. Phys. JAPIAU 58 , 45 57 ( 1985
    [CrossRef]
  9. E. Serrano , V. Lo pez , M. Carrascosa , and F. Agullo -Lo pez , Recording and erasure kinetics in photorefractive materials at large modulation depths , J. Opt. Soc. Am. B JOBPDE 11 , 670 675 ( 1994
    [CrossRef]
  10. J. V. Alvarez-Bravo , M. Carrascosa , and L. Arizmendi , Experimental effects of light intensity modulation on the recording and erasure of holographic gratings in BSO crystals , Opt. Commun. OPCOB8 103 , 22 28 ( 1993
    [CrossRef]
  11. A. Marrakchi , W. M. Hubbard , S. F. Habiby , and J. S. Patel , Dynamic holographic interconnects with analog weights in photorefractive crystals , Opt. Eng. OPEGAR 29 , 215 225 ( 1990
    [CrossRef]

Bauschulte, S

S. Fries , S. Bauschulte , E. Kra tzig , K. Ringhofer , and Y. Yacoby , Spatial frequency mixing in lithium niobate , Opt. Commun. OPCOB8 84 , 251 257 ( 1991
[CrossRef]

Fries, S

S. Fries , S. Bauschulte , E. Kra tzig , K. Ringhofer , and Y. Yacoby , Spatial frequency mixing in lithium niobate , Opt. Commun. OPCOB8 84 , 251 257 ( 1991
[CrossRef]

Habiby, S. F

A. Marrakchi , W. M. Hubbard , S. F. Habiby , and J. S. Patel , Dynamic holographic interconnects with analog weights in photorefractive crystals , Opt. Eng. OPEGAR 29 , 215 225 ( 1990
[CrossRef]

Hubbard, W. M

A. Marrakchi , W. M. Hubbard , S. F. Habiby , and J. S. Patel , Dynamic holographic interconnects with analog weights in photorefractive crystals , Opt. Eng. OPEGAR 29 , 215 225 ( 1990
[CrossRef]

Ledu, B

Ringhofer, K

S. Fries , S. Bauschulte , E. Kra tzig , K. Ringhofer , and Y. Yacoby , Spatial frequency mixing in lithium niobate , Opt. Commun. OPCOB8 84 , 251 257 ( 1991
[CrossRef]

Other

J.-P. Huignard and B. Ledu , Collinear Bragg diffraction in photorefractive Bi 12 SiO 20 , Opt. Lett. OPLEDP 7 , 310 312 ( 1982
[CrossRef] [PubMed]

S. Fries , S. Bauschulte , E. Kra tzig , K. Ringhofer , and Y. Yacoby , Spatial frequency mixing in lithium niobate , Opt. Commun. OPCOB8 84 , 251 257 ( 1991
[CrossRef]

P. E. Andersen , P. Buchhave , P. M. Petersen , and M. V. Vasnetsov , Nonlinear combinations of gratings in Bi 12 SiO 20 : theory and experiments , J. Opt. Soc. Am. B JOBPDE 12 , 1422 1433 ( 1995
[CrossRef]

H. C. Pedersen , P. E. Andersen , P. M. Petersen , and P. M. Johansen , Theory of nonlinear multiple-grating interaction in diffusion-dominated photorefractive media , J. Opt. Soc. Am. B JOBPDE 13 , 2569 2579 ( 1996
[CrossRef]

P. E. Andersen , P. M. Petersen , and P. Buchhave , Nonlinear combinations of gratings in drift-dominated recording in Bi 12 SiO 20 , J. Opt. Soc. Am. B JOBPDE 12 , 2453 2462 ( 1995
[CrossRef]

J. F. Heanue , M. C. Bashaw , and L. Hesselink , Volume holographic storage and retrieval of digital data , Science SCIEAS 265 , 749 752 ( 1994
[CrossRef] [PubMed]

P. Gu nter , Holography, coherent light amplification and optical phase conjugation with photorefractive materials , Phys. Rep. PRPLCM 93 , 199 299 ( 1982
[CrossRef]

Ph. Refre gier , L. Solymar , H. Rajbenbach , and J.-P. Huignard , Two-beam coupling in photorefractive Bi 12 SiO 20 crystals with moving grating: theory and experiments , J. Appl. Phys. JAPIAU 58 , 45 57 ( 1985
[CrossRef]

E. Serrano , V. Lo pez , M. Carrascosa , and F. Agullo -Lo pez , Recording and erasure kinetics in photorefractive materials at large modulation depths , J. Opt. Soc. Am. B JOBPDE 11 , 670 675 ( 1994
[CrossRef]

J. V. Alvarez-Bravo , M. Carrascosa , and L. Arizmendi , Experimental effects of light intensity modulation on the recording and erasure of holographic gratings in BSO crystals , Opt. Commun. OPCOB8 103 , 22 28 ( 1993
[CrossRef]

A. Marrakchi , W. M. Hubbard , S. F. Habiby , and J. S. Patel , Dynamic holographic interconnects with analog weights in photorefractive crystals , Opt. Eng. OPEGAR 29 , 215 225 ( 1990
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of recording and readout in the three-wave mixing configuration. In the experiments recording and readout are carried out simultaneously, but they are shown here separately for clarity. (a) Recording of gratings, (b) readout of gratings. BSO, Bi12SiO20.

Fig. 2
Fig. 2

Schematic of the spatial frequencies of the space-charge field and their relation to the index gratings. The amplitudes of the grating components relative to one another do not resemble the real values.

Fig. 3
Fig. 3

Diffraction pattern of ordinary second-harmonic G22 and combinational index grating G23 for β=0.245. Solid curves, the diffraction pattern without phase modulation applied to I1; dotted curves, the diffraction pattern with phase modulation applied to I1.

Fig. 4
Fig. 4

Normalized diffraction efficiency η(t) versus time for the three index gratings: G2 (circles), G22 (triangles), and G23 (squares). The parameters obtained from the experimental setup are β=0.255, κ=0.80, fringe spacings Λ1=0.925 μm and Λ2=0.933 μm, and separation angle δθ=2.7 mrad. The steady-state values of the diffraction efficiencies have been normalized to unity to facilitate the comparison.

Fig. 5
Fig. 5

Rise times t1090 as a function of intensity ratio β for the three index gratings: G2 (circles), G22 (triangles), and G23 (squares). The parameters obtained from the experimental setup are κ=0.80, fringe spacings Λ1=0.925 μm and Λ2=0.933 μm, and separation angle δθ=2.7 mrad.

Tables (1)

Tables Icon

Table 1 Nonlinear Cross Talk Δη as a Function of Intensity Ratio β for Non-Phase-Modulated Index Grating Components G2 and G22

Metrics