Abstract

Mutually pumped phase conjugation with a recording time of few milliseconds is obtained in Bi12TiO20 crystals by use of transient photorefractive beam coupling under a dc external electric field. It is demonstrated that the additional acceleration of the positive-feedback-loop formation is required for successful generation of transient phase-conjugate wave fronts. This acceleration is provided by the high-intensity transient photorefractive surface wave that appears immediately after application of the external electric field as the result of coupling of the incident beam with the reflected fanning beams. To the authors’ knowledge, this is the first experimental observation of a transient photorefractive surface wave.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Cronin-Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
    [CrossRef]
  2. M. D. Ewbank, “Mechanism of photorefractive phase-conjugation using incoherent beams,” Opt. Lett. 13, 47–49 (1988).
    [CrossRef] [PubMed]
  3. S. Sternklar, S. Weiss, M. Segev, and B. Fischer, “Beam coupling and locking of lasers using photorefractive four-wave mixing,” Opt. Lett. 11, 528–530 (1986).
    [CrossRef] [PubMed]
  4. T. Shimura, M. Tamura, and K. Kuroda, “Injection locking and mode switching of a diode laser with a double phase-conjugate mirror,” Opt. Lett. 18, 1645–1647 (1993).
    [CrossRef] [PubMed]
  5. P. Delaye, A. Blouin, D. Drolet, and J.-P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
    [CrossRef]
  6. V. V. Voronov, I. R. Dorosh, Y. S. Kuzminov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
    [CrossRef]
  7. D. L. Staebler and J. J. Amodey, “Coupled-wave analysis of holographic storage in LiNbO3,”J. Appl. Phys. 43, 1042–1049 (1972).
    [CrossRef]
  8. S. I. Stepanov and M. P. Petrov, “Efficient unstationary holographic recording in photorefractive crystals under an ex-ternal alternating electric field,” Opt. Commun. 53, 292–295 (1985).
    [CrossRef]
  9. N. V. Kukhtarev, V. B. Markov, and S. G. Odulov, “Transient energy transfer during hologram formation in LiNbO3 in external electric field,” Opt. Commun. 23, 338–343 (1977).
    [CrossRef]
  10. J. M. Heaton and L. Solymar, “Transient effects during dynamic hologram formation in BSO crystals: theory and experiment,” IEEE J. Quantum Electron. 24, 558–567 (1988).
    [CrossRef]
  11. E. Raita, A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Fast mutually pumped phase conjugation using transient photorefractive coupling,” Appl. Phys. Lett. 70, 1641–1643 (1997).
    [CrossRef]
  12. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]
  13. G. C. Valley and J. F. Lam, “Theory of photorefractive effects in electro-optic crystals,” in Photorefractive Materials and Their Applications. I. Fundamental Phenomena, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 75–98.
  14. F. Vachss, “Frequency-dependent photorefractive response in the presence of applied ac electric fields,” J. Opt. Soc. Am. B 11, 1045–1058 (1994).
    [CrossRef]
  15. H. Tuovinen, A. A. Kamshilin, and T. Jaaskelainen, “Asymmetry of two-wave coupling in cubic photorefractive crystals,” J. Opt. Soc. Am. B 14, 3383–3392 (1997).
    [CrossRef]
  16. S. I. Stepanov, S. M. Shandarov, and N. D. Hat’kov, “Photoelastic contribution to the photorefractive effect in cubic crystals,” Sov. Phys. Solid State 29, 1754–1756 (1987).
  17. J. E. Millerd, E. M. Garmire, M. B. Klein, B. A. Wechsler, F. P. Strohkendl, and G. A. Brost, “Photorefractive response at high modulation depths in Bi12TiO20,”J. Opt. Soc. Am. B 9, 1449–1453 (1992).
    [CrossRef]
  18. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
    [CrossRef]
  19. A. A. Kamshilin, E. Raita, V. V. Prokofiev, and T. Jaaskelainen, “Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber,” Appl. Phys. Lett. 67, 3242–3244 (1995).
    [CrossRef]
  20. A. A. Kamshilin, H. Tuovinen, V. V. Prokofiev, and T. Jaaskelainen, “Coupling of mutually incoherent beams in photorefractive Bi12TiO20 fiber,” Opt. Commun. 109, 312–317 (1994).
    [CrossRef]
  21. Q. B. He, P. Yeh, C. Gu, and R. R. Neurgaonkar, “Multigrating competition effects in photorefractive mutually pumped phase conjugation,” J. Opt. Soc. Am. B 9, 114–120 (1992).
    [CrossRef]
  22. A. A. Kamshilin, E. Raita, and A. V. Khomenko, “Intensity redistribution in a thin photorefractive crystal caused by strong fanning effect and internal reflections,” J. Opt. Soc. Am. B 13, 2536–2543 (1996).
    [CrossRef]
  23. G. S. Garcia-Quirino, J. J. Sanchez-Mondragon, and S. I. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A 51, 1571–1577 (1995).
    [CrossRef] [PubMed]
  24. M. Cronin-Golomb, “Photorefractive surface waves,” Opt. Lett. 20, 2075–2077 (1995).
    [CrossRef] [PubMed]
  25. A. V. Khomenko, A. Garcia-Weidner, and A. A. Kamshilin, “Amplification of optical signals in Bi12TiO20 crystal by photorefractive surface waves,” Opt. Lett. 21, 1014–1016 (1996).
    [CrossRef] [PubMed]

1997 (2)

E. Raita, A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Fast mutually pumped phase conjugation using transient photorefractive coupling,” Appl. Phys. Lett. 70, 1641–1643 (1997).
[CrossRef]

H. Tuovinen, A. A. Kamshilin, and T. Jaaskelainen, “Asymmetry of two-wave coupling in cubic photorefractive crystals,” J. Opt. Soc. Am. B 14, 3383–3392 (1997).
[CrossRef]

1996 (2)

1995 (4)

M. Cronin-Golomb, “Photorefractive surface waves,” Opt. Lett. 20, 2075–2077 (1995).
[CrossRef] [PubMed]

P. Delaye, A. Blouin, D. Drolet, and J.-P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

A. A. Kamshilin, E. Raita, V. V. Prokofiev, and T. Jaaskelainen, “Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber,” Appl. Phys. Lett. 67, 3242–3244 (1995).
[CrossRef]

G. S. Garcia-Quirino, J. J. Sanchez-Mondragon, and S. I. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A 51, 1571–1577 (1995).
[CrossRef] [PubMed]

1994 (2)

A. A. Kamshilin, H. Tuovinen, V. V. Prokofiev, and T. Jaaskelainen, “Coupling of mutually incoherent beams in photorefractive Bi12TiO20 fiber,” Opt. Commun. 109, 312–317 (1994).
[CrossRef]

F. Vachss, “Frequency-dependent photorefractive response in the presence of applied ac electric fields,” J. Opt. Soc. Am. B 11, 1045–1058 (1994).
[CrossRef]

1993 (1)

1992 (2)

1988 (2)

J. M. Heaton and L. Solymar, “Transient effects during dynamic hologram formation in BSO crystals: theory and experiment,” IEEE J. Quantum Electron. 24, 558–567 (1988).
[CrossRef]

M. D. Ewbank, “Mechanism of photorefractive phase-conjugation using incoherent beams,” Opt. Lett. 13, 47–49 (1988).
[CrossRef] [PubMed]

1987 (1)

S. I. Stepanov, S. M. Shandarov, and N. D. Hat’kov, “Photoelastic contribution to the photorefractive effect in cubic crystals,” Sov. Phys. Solid State 29, 1754–1756 (1987).

1986 (2)

S. Sternklar, S. Weiss, M. Segev, and B. Fischer, “Beam coupling and locking of lasers using photorefractive four-wave mixing,” Opt. Lett. 11, 528–530 (1986).
[CrossRef] [PubMed]

M. Cronin-Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
[CrossRef]

1985 (1)

S. I. Stepanov and M. P. Petrov, “Efficient unstationary holographic recording in photorefractive crystals under an ex-ternal alternating electric field,” Opt. Commun. 53, 292–295 (1985).
[CrossRef]

1980 (1)

V. V. Voronov, I. R. Dorosh, Y. S. Kuzminov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

1979 (2)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

1977 (1)

N. V. Kukhtarev, V. B. Markov, and S. G. Odulov, “Transient energy transfer during hologram formation in LiNbO3 in external electric field,” Opt. Commun. 23, 338–343 (1977).
[CrossRef]

1972 (1)

D. L. Staebler and J. J. Amodey, “Coupled-wave analysis of holographic storage in LiNbO3,”J. Appl. Phys. 43, 1042–1049 (1972).
[CrossRef]

Amodey, J. J.

D. L. Staebler and J. J. Amodey, “Coupled-wave analysis of holographic storage in LiNbO3,”J. Appl. Phys. 43, 1042–1049 (1972).
[CrossRef]

Blouin, A.

P. Delaye, A. Blouin, D. Drolet, and J.-P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

Brost, G. A.

Cronin-Golomb, M.

M. Cronin-Golomb, “Photorefractive surface waves,” Opt. Lett. 20, 2075–2077 (1995).
[CrossRef] [PubMed]

M. Cronin-Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
[CrossRef]

Delaye, P.

P. Delaye, A. Blouin, D. Drolet, and J.-P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

Dorosh, I. R.

V. V. Voronov, I. R. Dorosh, Y. S. Kuzminov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

Drolet, D.

P. Delaye, A. Blouin, D. Drolet, and J.-P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

Ewbank, M. D.

Fischer, B.

Garcia-Quirino, G. S.

G. S. Garcia-Quirino, J. J. Sanchez-Mondragon, and S. I. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A 51, 1571–1577 (1995).
[CrossRef] [PubMed]

Garcia-Weidner, A.

Garmire, E. M.

Gu, C.

Hat’kov, N. D.

S. I. Stepanov, S. M. Shandarov, and N. D. Hat’kov, “Photoelastic contribution to the photorefractive effect in cubic crystals,” Sov. Phys. Solid State 29, 1754–1756 (1987).

He, Q. B.

Heaton, J. M.

J. M. Heaton and L. Solymar, “Transient effects during dynamic hologram formation in BSO crystals: theory and experiment,” IEEE J. Quantum Electron. 24, 558–567 (1988).
[CrossRef]

Jaaskelainen, T.

E. Raita, A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Fast mutually pumped phase conjugation using transient photorefractive coupling,” Appl. Phys. Lett. 70, 1641–1643 (1997).
[CrossRef]

H. Tuovinen, A. A. Kamshilin, and T. Jaaskelainen, “Asymmetry of two-wave coupling in cubic photorefractive crystals,” J. Opt. Soc. Am. B 14, 3383–3392 (1997).
[CrossRef]

A. A. Kamshilin, E. Raita, V. V. Prokofiev, and T. Jaaskelainen, “Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber,” Appl. Phys. Lett. 67, 3242–3244 (1995).
[CrossRef]

A. A. Kamshilin, H. Tuovinen, V. V. Prokofiev, and T. Jaaskelainen, “Coupling of mutually incoherent beams in photorefractive Bi12TiO20 fiber,” Opt. Commun. 109, 312–317 (1994).
[CrossRef]

Kamshilin, A. A.

E. Raita, A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Fast mutually pumped phase conjugation using transient photorefractive coupling,” Appl. Phys. Lett. 70, 1641–1643 (1997).
[CrossRef]

H. Tuovinen, A. A. Kamshilin, and T. Jaaskelainen, “Asymmetry of two-wave coupling in cubic photorefractive crystals,” J. Opt. Soc. Am. B 14, 3383–3392 (1997).
[CrossRef]

A. V. Khomenko, A. Garcia-Weidner, and A. A. Kamshilin, “Amplification of optical signals in Bi12TiO20 crystal by photorefractive surface waves,” Opt. Lett. 21, 1014–1016 (1996).
[CrossRef] [PubMed]

A. A. Kamshilin, E. Raita, and A. V. Khomenko, “Intensity redistribution in a thin photorefractive crystal caused by strong fanning effect and internal reflections,” J. Opt. Soc. Am. B 13, 2536–2543 (1996).
[CrossRef]

A. A. Kamshilin, E. Raita, V. V. Prokofiev, and T. Jaaskelainen, “Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber,” Appl. Phys. Lett. 67, 3242–3244 (1995).
[CrossRef]

A. A. Kamshilin, H. Tuovinen, V. V. Prokofiev, and T. Jaaskelainen, “Coupling of mutually incoherent beams in photorefractive Bi12TiO20 fiber,” Opt. Commun. 109, 312–317 (1994).
[CrossRef]

Khomenko, A. V.

Klein, M. B.

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, and S. G. Odulov, “Transient energy transfer during hologram formation in LiNbO3 in external electric field,” Opt. Commun. 23, 338–343 (1977).
[CrossRef]

Kuroda, K.

Kuzminov, Y. S.

V. V. Voronov, I. R. Dorosh, Y. S. Kuzminov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

Lam, J. F.

G. C. Valley and J. F. Lam, “Theory of photorefractive effects in electro-optic crystals,” in Photorefractive Materials and Their Applications. I. Fundamental Phenomena, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 75–98.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, and S. G. Odulov, “Transient energy transfer during hologram formation in LiNbO3 in external electric field,” Opt. Commun. 23, 338–343 (1977).
[CrossRef]

Millerd, J. E.

Monchalin, J.-P.

P. Delaye, A. Blouin, D. Drolet, and J.-P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

Neurgaonkar, R. R.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, and S. G. Odulov, “Transient energy transfer during hologram formation in LiNbO3 in external electric field,” Opt. Commun. 23, 338–343 (1977).
[CrossRef]

Petrov, M. P.

S. I. Stepanov and M. P. Petrov, “Efficient unstationary holographic recording in photorefractive crystals under an ex-ternal alternating electric field,” Opt. Commun. 53, 292–295 (1985).
[CrossRef]

Prokofiev, V. V.

E. Raita, A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Fast mutually pumped phase conjugation using transient photorefractive coupling,” Appl. Phys. Lett. 70, 1641–1643 (1997).
[CrossRef]

A. A. Kamshilin, E. Raita, V. V. Prokofiev, and T. Jaaskelainen, “Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber,” Appl. Phys. Lett. 67, 3242–3244 (1995).
[CrossRef]

A. A. Kamshilin, H. Tuovinen, V. V. Prokofiev, and T. Jaaskelainen, “Coupling of mutually incoherent beams in photorefractive Bi12TiO20 fiber,” Opt. Commun. 109, 312–317 (1994).
[CrossRef]

Raita, E.

E. Raita, A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Fast mutually pumped phase conjugation using transient photorefractive coupling,” Appl. Phys. Lett. 70, 1641–1643 (1997).
[CrossRef]

A. A. Kamshilin, E. Raita, and A. V. Khomenko, “Intensity redistribution in a thin photorefractive crystal caused by strong fanning effect and internal reflections,” J. Opt. Soc. Am. B 13, 2536–2543 (1996).
[CrossRef]

A. A. Kamshilin, E. Raita, V. V. Prokofiev, and T. Jaaskelainen, “Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber,” Appl. Phys. Lett. 67, 3242–3244 (1995).
[CrossRef]

Sanchez-Mondragon, J. J.

G. S. Garcia-Quirino, J. J. Sanchez-Mondragon, and S. I. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A 51, 1571–1577 (1995).
[CrossRef] [PubMed]

Segev, M.

Shandarov, S. M.

S. I. Stepanov, S. M. Shandarov, and N. D. Hat’kov, “Photoelastic contribution to the photorefractive effect in cubic crystals,” Sov. Phys. Solid State 29, 1754–1756 (1987).

Shimura, T.

Solymar, L.

J. M. Heaton and L. Solymar, “Transient effects during dynamic hologram formation in BSO crystals: theory and experiment,” IEEE J. Quantum Electron. 24, 558–567 (1988).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

Staebler, D. L.

D. L. Staebler and J. J. Amodey, “Coupled-wave analysis of holographic storage in LiNbO3,”J. Appl. Phys. 43, 1042–1049 (1972).
[CrossRef]

Stepanov, S. I.

G. S. Garcia-Quirino, J. J. Sanchez-Mondragon, and S. I. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A 51, 1571–1577 (1995).
[CrossRef] [PubMed]

S. I. Stepanov, S. M. Shandarov, and N. D. Hat’kov, “Photoelastic contribution to the photorefractive effect in cubic crystals,” Sov. Phys. Solid State 29, 1754–1756 (1987).

S. I. Stepanov and M. P. Petrov, “Efficient unstationary holographic recording in photorefractive crystals under an ex-ternal alternating electric field,” Opt. Commun. 53, 292–295 (1985).
[CrossRef]

Sternklar, S.

Strohkendl, F. P.

Tamura, M.

Tkachenko, N. V.

V. V. Voronov, I. R. Dorosh, Y. S. Kuzminov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

Tuovinen, H.

H. Tuovinen, A. A. Kamshilin, and T. Jaaskelainen, “Asymmetry of two-wave coupling in cubic photorefractive crystals,” J. Opt. Soc. Am. B 14, 3383–3392 (1997).
[CrossRef]

A. A. Kamshilin, H. Tuovinen, V. V. Prokofiev, and T. Jaaskelainen, “Coupling of mutually incoherent beams in photorefractive Bi12TiO20 fiber,” Opt. Commun. 109, 312–317 (1994).
[CrossRef]

Ury, I.

M. Cronin-Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
[CrossRef]

Vachss, F.

Valley, G. C.

G. C. Valley and J. F. Lam, “Theory of photorefractive effects in electro-optic crystals,” in Photorefractive Materials and Their Applications. I. Fundamental Phenomena, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 75–98.

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

Voronov, V. V.

V. V. Voronov, I. R. Dorosh, Y. S. Kuzminov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

Wechsler, B. A.

Weiss, S.

Yariv, A.

M. Cronin-Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
[CrossRef]

Yeh, P.

Appl. Phys. Lett. (4)

M. Cronin-Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, and J.-P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

E. Raita, A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Fast mutually pumped phase conjugation using transient photorefractive coupling,” Appl. Phys. Lett. 70, 1641–1643 (1997).
[CrossRef]

A. A. Kamshilin, E. Raita, V. V. Prokofiev, and T. Jaaskelainen, “Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber,” Appl. Phys. Lett. 67, 3242–3244 (1995).
[CrossRef]

Ferroelectrics (2)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. M. Heaton and L. Solymar, “Transient effects during dynamic hologram formation in BSO crystals: theory and experiment,” IEEE J. Quantum Electron. 24, 558–567 (1988).
[CrossRef]

J. Appl. Phys. (1)

D. L. Staebler and J. J. Amodey, “Coupled-wave analysis of holographic storage in LiNbO3,”J. Appl. Phys. 43, 1042–1049 (1972).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Commun. (3)

A. A. Kamshilin, H. Tuovinen, V. V. Prokofiev, and T. Jaaskelainen, “Coupling of mutually incoherent beams in photorefractive Bi12TiO20 fiber,” Opt. Commun. 109, 312–317 (1994).
[CrossRef]

S. I. Stepanov and M. P. Petrov, “Efficient unstationary holographic recording in photorefractive crystals under an ex-ternal alternating electric field,” Opt. Commun. 53, 292–295 (1985).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, and S. G. Odulov, “Transient energy transfer during hologram formation in LiNbO3 in external electric field,” Opt. Commun. 23, 338–343 (1977).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. A (1)

G. S. Garcia-Quirino, J. J. Sanchez-Mondragon, and S. I. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A 51, 1571–1577 (1995).
[CrossRef] [PubMed]

Sov. J. Quantum Electron. (1)

V. V. Voronov, I. R. Dorosh, Y. S. Kuzminov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

Sov. Phys. Solid State (1)

S. I. Stepanov, S. M. Shandarov, and N. D. Hat’kov, “Photoelastic contribution to the photorefractive effect in cubic crystals,” Sov. Phys. Solid State 29, 1754–1756 (1987).

Other (1)

G. C. Valley and J. F. Lam, “Theory of photorefractive effects in electro-optic crystals,” in Photorefractive Materials and Their Applications. I. Fundamental Phenomena, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 75–98.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Calculated evolution of the beam-coupling gain factor during hologram formation for three values of the spatial frequency of a holographic grating: (a) 55 lines/mm, (b) 147 lines/mm, and (c) 220 lines/mm. These spatial frequencies correspond to angles between interacting beams of 2°, 5°, and 8°, respectively. The following material parameters were used for the calculations: NA=2×1016 cm-3, ND=1019 cm-3, μ=0.66×10-2 cm2/V s, and γ=3.5×10-11 cm3/s.The pump-beam intensity was 1.3 W/cm2.

Fig. 2
Fig. 2

Experimental geometry of the fiberlike BTO crystal and the typical steady-state fanning pattern emerging in the far field of the crystal. A horizontally polarized pump beam of the red He–Ne laser (λ=632.8 nm) is launched into the sample to propagate along the 〈110〉 axis. The vector of the external electric field is parallel to the 〈1̅11〉 axis. The white arrows show three angular positions of the photodetector in the experiment.

Fig. 3
Fig. 3

Temporal evolution of the transient amplification gain for three spatial frequencies, (a) 55 lines/mm, (b) 147 lines/mm, and (c) 220 lines/mm, corresponding to scattering angles of 2°, 5°, and 8°, respectively. Curves were measured after the rising front of a dc electric field with a 35-kV/cm amplitude was applied to the crystal. The pump-beam intensity was 2.25 W/cm2.

Fig. 4
Fig. 4

Angular distribution of the coupling gain at three moments of time during the process of fanning pattern formation. To show the transition of the amplification maximum in time, the angular distribution of the amplification gain was measured at (a) 8 ms, (b) 35 ms, and (c) 500 ms after application of the rising front of a dc electric field with an amplitude of 35 kV/cm.

Fig. 5
Fig. 5

Experimental setup for (a) conventional steady-state MPPC and for (b) novel transient MPPC. Horizontally polarized pump beams P1 and P2 are derived from the independent He–Ne lasers. PC1 and PC2 are the phase-conjugate responses. The angle between the incident pump beams is determined by the angular position of the steady-state fanning maximum in the case of steady-state MPPC. Transient MPPC is constructed such that the angle between pump beams is equal to 2°, corresponding to a spatial frequency of 55 lines/mm.

Fig. 6
Fig. 6

CCD-camera image of the transient phase-conjugate response. The phase-conjugate output is accompanied by a specific ring that is the result of the degeneration of Bragg-diffraction conditions when the plane-wave-front beams are used to pump a photorefractive phase conjugator.

Fig. 7
Fig. 7

Temporal evolution of the phase-conjugate response of (a) transient MPPC and of (b), (c) two fanning gratings involved in the MPPC process. Fanning-response curves are measured independently of each other when the crystal is illuminated by only one pump beam.

Fig. 8
Fig. 8

Response time of the transient phase conjugator as a function of the amplitude of the applied dc electric field. A BTO crystal is illuminated by two independent He–Ne laser beams with a total intensity of 2×2.25 W/cm2.

Fig. 9
Fig. 9

CCD-camera images showing the intensity redistribution at the output face of the fiberlike BTO crystal after the application of an external dc electric field. (a) Initial situation when no external electric field is applied. (b) Transient situation immediately after application of the rising front of a dc electric field with an amplitude of 35 kV/cm, demonstrating the effect of light-intensity self-channeling into a transient photorefractive surface wave that appears near the left-hand-side surface of the crystal. The steady-state situation with the dc electric field applied is shown in (c).

Fig. 10
Fig. 10

Intensity distribution across the output face of the crystal in the steady state with the dc electric field applied (lighter curve) and in the transient case immediately after the dc field has been switched on (heavier curve). The channel of the increased intensity corresponding to the transient photorefractive surface waves is clearly distinguished near the left-hand-side surface of the crystal.  

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dE1dt+1-iEA/EQ1-iEA/EM E1τM=-EAτM(1-iEA/EM).
EAE0+iED,
EMγNAμKG,
EQeNA(ND-NA)0KGND,
EDKGkBTe.

Metrics