Abstract

A phase-conjugate wave is generated when an ordinary (extraordinary) signal wave is mixed with two counterpropagating extraordinary (ordinary) waves in the plane normal to the BaTiO3 polar axis. The photorefractive grating that couples the ordinary and the extraordinary waves appears if the incident waves induce a noticeable conical parametric scattering; this grating is a difference grating of many noisy scattering gratings recorded by means of the usual diffusion-mediated charge transport. For comparable intensities of signal and pump waves this type of nonlinear wave mixing is much more efficient than that which is due to the circular bulk photovoltaic effect.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Hellwarth, “Generation of time-reversed wave fronts by nonlinear refraction,” J. Opt. Soc. Am. 67, 1–3 (1977).
    [Crossref]
  2. A. Yariv and D. Pepper, “Amplified reflection, phase conjugation, and oscillation in degenerate four wave mixing,” Opt. Lett. 1, 16–18 (1977).
    [Crossref]
  3. M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–29 (1984).
    [Crossref]
  4. J. Feinberg, “Self-pumped continuous wave phase conjugator using internal reflections,” Opt. Lett. 8, 569–571 (1983).
    [Crossref] [PubMed]
  5. A. Yariv, “Phase conjugate optics and real time holography,” IEEE J. Quantum Electron. QE-14, 650–660 (1978).
    [Crossref]
  6. M. Goul’kov and S. Odoulov, “Self-diffraction in anisotropic nonlinear media in configurations forbidden by symmetry considerations,” Ukr. Fiz. Zh. 56, 193–199 (1991).
  7. B. I. Sturman, E. Krätzig, and S. G. Odoulov, “ Coupling of orthogonally polarized eigenwaves in BaTiO3 by light-induced parametric scattering,” J. Opt. Soc. Am. B 114, 2295–2303 (1997).
    [Crossref]
  8. S. Odoulov, “Vectorial interactions in photovoltaic media,” Ferroelectrics 91, 213–221 (1987).
    [Crossref]
  9. P. Jullien, P. Mathey, P. Lompré, A. Novikov, and S. Odoulov, “Polarization backward-wave four-wave mixing in BaTiO3:Fe using the photovoltaic effect,” J. Opt. Soc. Am. B 14, 1735–1740 (1997).
    [Crossref]
  10. L. Holtmann, E. Kraetzig, and S. Odoulov, “Coupling of orthogonally polarized waves in BaTiO3,” Appl. Phys. B 53, 1–5 (1991).
    [Crossref]
  11. B. Sturman, S. Odoulov, and M. Goul’kov, “Phenomenological analysis of parametric scattering processes in photorefractive crystals,” J. Opt. Soc. Am. B 13, 577–583 (1995).
    [Crossref]
  12. B. Sturman, S. Odoulov, and M Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
    [Crossref]
  13. B. Sturman and S. Odoulov, “Coupling of orthogonally polarized waves in barium titanate by parametric scattering,” JETP 82, 1095–1101 (1996).
  14. B. Sturman, S. Odoulov, A. Novikov, and P. Jullien, “Energy transfer due to beam coupling from shifted photorefractive gratings in BaTiO3,” Russ. J. Quantum Electron. 26, 907–908 (1996).
    [Crossref]
  15. B. Sturman, S. Odoulov, L. Holtmann, and U. van Olfen, “Dynamics of parametric scattering of orthogonally polarized waves in BaTiO3,” Appl. Phys. A 55, 65–78 (1992).
    [Crossref]
  16. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
    [Crossref]
  17. B. Sturman and V. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon & Breach, Philadelphia, Pa., 1992).
  18. V. Belinicher, “Space-oscillating photocurrents in crystals without symmetry centre,” Phys. Lett. 66A, 213–216 (1978).
    [Crossref]
  19. R. M. Pierce and R. S. Cudney, “Photorefractive coupling between orthogonally polarized waves in barium titanate,” Opt. Lett. 17, 784–786 (1992).
    [Crossref] [PubMed]
  20. N. Kukhtarev, G. Dovgalenko, J. Schulz, G. Duree, G. Salamo, M. Klein, and B. Wechsler, “Manifestations of circular photogalvanic current by dynamic holography,” Appl. Phys. A 56, 303–305 (1993).
    [Crossref]
  21. N. Kukhtarev, G. Dovgalenko, G. Duree, G. Salamo, E. Sharp, B. Wechsler, and M. Klein, “Single beam polarization grating recording,” Phys. Rev. Lett. 71, 4330–4333 (1993).
    [Crossref] [PubMed]

1997 (2)

B. I. Sturman, E. Krätzig, and S. G. Odoulov, “ Coupling of orthogonally polarized eigenwaves in BaTiO3 by light-induced parametric scattering,” J. Opt. Soc. Am. B 114, 2295–2303 (1997).
[Crossref]

P. Jullien, P. Mathey, P. Lompré, A. Novikov, and S. Odoulov, “Polarization backward-wave four-wave mixing in BaTiO3:Fe using the photovoltaic effect,” J. Opt. Soc. Am. B 14, 1735–1740 (1997).
[Crossref]

1996 (3)

B. Sturman, S. Odoulov, and M Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
[Crossref]

B. Sturman and S. Odoulov, “Coupling of orthogonally polarized waves in barium titanate by parametric scattering,” JETP 82, 1095–1101 (1996).

B. Sturman, S. Odoulov, A. Novikov, and P. Jullien, “Energy transfer due to beam coupling from shifted photorefractive gratings in BaTiO3,” Russ. J. Quantum Electron. 26, 907–908 (1996).
[Crossref]

1995 (1)

1993 (2)

N. Kukhtarev, G. Dovgalenko, J. Schulz, G. Duree, G. Salamo, M. Klein, and B. Wechsler, “Manifestations of circular photogalvanic current by dynamic holography,” Appl. Phys. A 56, 303–305 (1993).
[Crossref]

N. Kukhtarev, G. Dovgalenko, G. Duree, G. Salamo, E. Sharp, B. Wechsler, and M. Klein, “Single beam polarization grating recording,” Phys. Rev. Lett. 71, 4330–4333 (1993).
[Crossref] [PubMed]

1992 (2)

R. M. Pierce and R. S. Cudney, “Photorefractive coupling between orthogonally polarized waves in barium titanate,” Opt. Lett. 17, 784–786 (1992).
[Crossref] [PubMed]

B. Sturman, S. Odoulov, L. Holtmann, and U. van Olfen, “Dynamics of parametric scattering of orthogonally polarized waves in BaTiO3,” Appl. Phys. A 55, 65–78 (1992).
[Crossref]

1991 (2)

M. Goul’kov and S. Odoulov, “Self-diffraction in anisotropic nonlinear media in configurations forbidden by symmetry considerations,” Ukr. Fiz. Zh. 56, 193–199 (1991).

L. Holtmann, E. Kraetzig, and S. Odoulov, “Coupling of orthogonally polarized waves in BaTiO3,” Appl. Phys. B 53, 1–5 (1991).
[Crossref]

1987 (1)

S. Odoulov, “Vectorial interactions in photovoltaic media,” Ferroelectrics 91, 213–221 (1987).
[Crossref]

1984 (1)

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–29 (1984).
[Crossref]

1983 (1)

1978 (2)

A. Yariv, “Phase conjugate optics and real time holography,” IEEE J. Quantum Electron. QE-14, 650–660 (1978).
[Crossref]

V. Belinicher, “Space-oscillating photocurrents in crystals without symmetry centre,” Phys. Lett. 66A, 213–216 (1978).
[Crossref]

1977 (2)

1974 (1)

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[Crossref]

Belinicher, V.

V. Belinicher, “Space-oscillating photocurrents in crystals without symmetry centre,” Phys. Lett. 66A, 213–216 (1978).
[Crossref]

Cronin-Golomb, M.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–29 (1984).
[Crossref]

Cudney, R. S.

Dovgalenko, G.

N. Kukhtarev, G. Dovgalenko, J. Schulz, G. Duree, G. Salamo, M. Klein, and B. Wechsler, “Manifestations of circular photogalvanic current by dynamic holography,” Appl. Phys. A 56, 303–305 (1993).
[Crossref]

N. Kukhtarev, G. Dovgalenko, G. Duree, G. Salamo, E. Sharp, B. Wechsler, and M. Klein, “Single beam polarization grating recording,” Phys. Rev. Lett. 71, 4330–4333 (1993).
[Crossref] [PubMed]

Duree, G.

N. Kukhtarev, G. Dovgalenko, G. Duree, G. Salamo, E. Sharp, B. Wechsler, and M. Klein, “Single beam polarization grating recording,” Phys. Rev. Lett. 71, 4330–4333 (1993).
[Crossref] [PubMed]

N. Kukhtarev, G. Dovgalenko, J. Schulz, G. Duree, G. Salamo, M. Klein, and B. Wechsler, “Manifestations of circular photogalvanic current by dynamic holography,” Appl. Phys. A 56, 303–305 (1993).
[Crossref]

Feinberg, J.

Fischer, B.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–29 (1984).
[Crossref]

Fridkin, V.

B. Sturman and V. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon & Breach, Philadelphia, Pa., 1992).

Glass, A. M.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[Crossref]

Goul’kov, M

B. Sturman, S. Odoulov, and M Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
[Crossref]

Goul’kov, M.

B. Sturman, S. Odoulov, and M. Goul’kov, “Phenomenological analysis of parametric scattering processes in photorefractive crystals,” J. Opt. Soc. Am. B 13, 577–583 (1995).
[Crossref]

M. Goul’kov and S. Odoulov, “Self-diffraction in anisotropic nonlinear media in configurations forbidden by symmetry considerations,” Ukr. Fiz. Zh. 56, 193–199 (1991).

Hellwarth, R. W.

Holtmann, L.

B. Sturman, S. Odoulov, L. Holtmann, and U. van Olfen, “Dynamics of parametric scattering of orthogonally polarized waves in BaTiO3,” Appl. Phys. A 55, 65–78 (1992).
[Crossref]

L. Holtmann, E. Kraetzig, and S. Odoulov, “Coupling of orthogonally polarized waves in BaTiO3,” Appl. Phys. B 53, 1–5 (1991).
[Crossref]

Jullien, P.

P. Jullien, P. Mathey, P. Lompré, A. Novikov, and S. Odoulov, “Polarization backward-wave four-wave mixing in BaTiO3:Fe using the photovoltaic effect,” J. Opt. Soc. Am. B 14, 1735–1740 (1997).
[Crossref]

B. Sturman, S. Odoulov, A. Novikov, and P. Jullien, “Energy transfer due to beam coupling from shifted photorefractive gratings in BaTiO3,” Russ. J. Quantum Electron. 26, 907–908 (1996).
[Crossref]

Klein, M.

N. Kukhtarev, G. Dovgalenko, J. Schulz, G. Duree, G. Salamo, M. Klein, and B. Wechsler, “Manifestations of circular photogalvanic current by dynamic holography,” Appl. Phys. A 56, 303–305 (1993).
[Crossref]

N. Kukhtarev, G. Dovgalenko, G. Duree, G. Salamo, E. Sharp, B. Wechsler, and M. Klein, “Single beam polarization grating recording,” Phys. Rev. Lett. 71, 4330–4333 (1993).
[Crossref] [PubMed]

Kraetzig, E.

L. Holtmann, E. Kraetzig, and S. Odoulov, “Coupling of orthogonally polarized waves in BaTiO3,” Appl. Phys. B 53, 1–5 (1991).
[Crossref]

Krätzig, E.

B. I. Sturman, E. Krätzig, and S. G. Odoulov, “ Coupling of orthogonally polarized eigenwaves in BaTiO3 by light-induced parametric scattering,” J. Opt. Soc. Am. B 114, 2295–2303 (1997).
[Crossref]

Kukhtarev, N.

N. Kukhtarev, G. Dovgalenko, J. Schulz, G. Duree, G. Salamo, M. Klein, and B. Wechsler, “Manifestations of circular photogalvanic current by dynamic holography,” Appl. Phys. A 56, 303–305 (1993).
[Crossref]

N. Kukhtarev, G. Dovgalenko, G. Duree, G. Salamo, E. Sharp, B. Wechsler, and M. Klein, “Single beam polarization grating recording,” Phys. Rev. Lett. 71, 4330–4333 (1993).
[Crossref] [PubMed]

Lompré, P.

Mathey, P.

Negran, T. J.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[Crossref]

Novikov, A.

P. Jullien, P. Mathey, P. Lompré, A. Novikov, and S. Odoulov, “Polarization backward-wave four-wave mixing in BaTiO3:Fe using the photovoltaic effect,” J. Opt. Soc. Am. B 14, 1735–1740 (1997).
[Crossref]

B. Sturman, S. Odoulov, A. Novikov, and P. Jullien, “Energy transfer due to beam coupling from shifted photorefractive gratings in BaTiO3,” Russ. J. Quantum Electron. 26, 907–908 (1996).
[Crossref]

Odoulov, S.

P. Jullien, P. Mathey, P. Lompré, A. Novikov, and S. Odoulov, “Polarization backward-wave four-wave mixing in BaTiO3:Fe using the photovoltaic effect,” J. Opt. Soc. Am. B 14, 1735–1740 (1997).
[Crossref]

B. Sturman and S. Odoulov, “Coupling of orthogonally polarized waves in barium titanate by parametric scattering,” JETP 82, 1095–1101 (1996).

B. Sturman, S. Odoulov, and M Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
[Crossref]

B. Sturman, S. Odoulov, A. Novikov, and P. Jullien, “Energy transfer due to beam coupling from shifted photorefractive gratings in BaTiO3,” Russ. J. Quantum Electron. 26, 907–908 (1996).
[Crossref]

B. Sturman, S. Odoulov, and M. Goul’kov, “Phenomenological analysis of parametric scattering processes in photorefractive crystals,” J. Opt. Soc. Am. B 13, 577–583 (1995).
[Crossref]

B. Sturman, S. Odoulov, L. Holtmann, and U. van Olfen, “Dynamics of parametric scattering of orthogonally polarized waves in BaTiO3,” Appl. Phys. A 55, 65–78 (1992).
[Crossref]

M. Goul’kov and S. Odoulov, “Self-diffraction in anisotropic nonlinear media in configurations forbidden by symmetry considerations,” Ukr. Fiz. Zh. 56, 193–199 (1991).

L. Holtmann, E. Kraetzig, and S. Odoulov, “Coupling of orthogonally polarized waves in BaTiO3,” Appl. Phys. B 53, 1–5 (1991).
[Crossref]

S. Odoulov, “Vectorial interactions in photovoltaic media,” Ferroelectrics 91, 213–221 (1987).
[Crossref]

Odoulov, S. G.

B. I. Sturman, E. Krätzig, and S. G. Odoulov, “ Coupling of orthogonally polarized eigenwaves in BaTiO3 by light-induced parametric scattering,” J. Opt. Soc. Am. B 114, 2295–2303 (1997).
[Crossref]

Pepper, D.

Pierce, R. M.

Salamo, G.

N. Kukhtarev, G. Dovgalenko, G. Duree, G. Salamo, E. Sharp, B. Wechsler, and M. Klein, “Single beam polarization grating recording,” Phys. Rev. Lett. 71, 4330–4333 (1993).
[Crossref] [PubMed]

N. Kukhtarev, G. Dovgalenko, J. Schulz, G. Duree, G. Salamo, M. Klein, and B. Wechsler, “Manifestations of circular photogalvanic current by dynamic holography,” Appl. Phys. A 56, 303–305 (1993).
[Crossref]

Schulz, J.

N. Kukhtarev, G. Dovgalenko, J. Schulz, G. Duree, G. Salamo, M. Klein, and B. Wechsler, “Manifestations of circular photogalvanic current by dynamic holography,” Appl. Phys. A 56, 303–305 (1993).
[Crossref]

Sharp, E.

N. Kukhtarev, G. Dovgalenko, G. Duree, G. Salamo, E. Sharp, B. Wechsler, and M. Klein, “Single beam polarization grating recording,” Phys. Rev. Lett. 71, 4330–4333 (1993).
[Crossref] [PubMed]

Sturman, B.

B. Sturman and S. Odoulov, “Coupling of orthogonally polarized waves in barium titanate by parametric scattering,” JETP 82, 1095–1101 (1996).

B. Sturman, S. Odoulov, and M Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
[Crossref]

B. Sturman, S. Odoulov, A. Novikov, and P. Jullien, “Energy transfer due to beam coupling from shifted photorefractive gratings in BaTiO3,” Russ. J. Quantum Electron. 26, 907–908 (1996).
[Crossref]

B. Sturman, S. Odoulov, and M. Goul’kov, “Phenomenological analysis of parametric scattering processes in photorefractive crystals,” J. Opt. Soc. Am. B 13, 577–583 (1995).
[Crossref]

B. Sturman, S. Odoulov, L. Holtmann, and U. van Olfen, “Dynamics of parametric scattering of orthogonally polarized waves in BaTiO3,” Appl. Phys. A 55, 65–78 (1992).
[Crossref]

B. Sturman and V. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon & Breach, Philadelphia, Pa., 1992).

Sturman, B. I.

B. I. Sturman, E. Krätzig, and S. G. Odoulov, “ Coupling of orthogonally polarized eigenwaves in BaTiO3 by light-induced parametric scattering,” J. Opt. Soc. Am. B 114, 2295–2303 (1997).
[Crossref]

van Olfen, U.

B. Sturman, S. Odoulov, L. Holtmann, and U. van Olfen, “Dynamics of parametric scattering of orthogonally polarized waves in BaTiO3,” Appl. Phys. A 55, 65–78 (1992).
[Crossref]

von der Linde, D.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[Crossref]

Wechsler, B.

N. Kukhtarev, G. Dovgalenko, G. Duree, G. Salamo, E. Sharp, B. Wechsler, and M. Klein, “Single beam polarization grating recording,” Phys. Rev. Lett. 71, 4330–4333 (1993).
[Crossref] [PubMed]

N. Kukhtarev, G. Dovgalenko, J. Schulz, G. Duree, G. Salamo, M. Klein, and B. Wechsler, “Manifestations of circular photogalvanic current by dynamic holography,” Appl. Phys. A 56, 303–305 (1993).
[Crossref]

White, J. O.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–29 (1984).
[Crossref]

Yariv, A.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–29 (1984).
[Crossref]

A. Yariv, “Phase conjugate optics and real time holography,” IEEE J. Quantum Electron. QE-14, 650–660 (1978).
[Crossref]

A. Yariv and D. Pepper, “Amplified reflection, phase conjugation, and oscillation in degenerate four wave mixing,” Opt. Lett. 1, 16–18 (1977).
[Crossref]

Appl. Phys. A (2)

B. Sturman, S. Odoulov, L. Holtmann, and U. van Olfen, “Dynamics of parametric scattering of orthogonally polarized waves in BaTiO3,” Appl. Phys. A 55, 65–78 (1992).
[Crossref]

N. Kukhtarev, G. Dovgalenko, J. Schulz, G. Duree, G. Salamo, M. Klein, and B. Wechsler, “Manifestations of circular photogalvanic current by dynamic holography,” Appl. Phys. A 56, 303–305 (1993).
[Crossref]

Appl. Phys. B (1)

L. Holtmann, E. Kraetzig, and S. Odoulov, “Coupling of orthogonally polarized waves in BaTiO3,” Appl. Phys. B 53, 1–5 (1991).
[Crossref]

Appl. Phys. Lett. (1)

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[Crossref]

Ferroelectrics (1)

S. Odoulov, “Vectorial interactions in photovoltaic media,” Ferroelectrics 91, 213–221 (1987).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Yariv, “Phase conjugate optics and real time holography,” IEEE J. Quantum Electron. QE-14, 650–660 (1978).
[Crossref]

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–29 (1984).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

JETP (1)

B. Sturman and S. Odoulov, “Coupling of orthogonally polarized waves in barium titanate by parametric scattering,” JETP 82, 1095–1101 (1996).

Opt. Lett. (3)

Phys. Lett. (1)

V. Belinicher, “Space-oscillating photocurrents in crystals without symmetry centre,” Phys. Lett. 66A, 213–216 (1978).
[Crossref]

Phys. Rep. (1)

B. Sturman, S. Odoulov, and M Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
[Crossref]

Phys. Rev. Lett. (1)

N. Kukhtarev, G. Dovgalenko, G. Duree, G. Salamo, E. Sharp, B. Wechsler, and M. Klein, “Single beam polarization grating recording,” Phys. Rev. Lett. 71, 4330–4333 (1993).
[Crossref] [PubMed]

Russ. J. Quantum Electron. (1)

B. Sturman, S. Odoulov, A. Novikov, and P. Jullien, “Energy transfer due to beam coupling from shifted photorefractive gratings in BaTiO3,” Russ. J. Quantum Electron. 26, 907–908 (1996).
[Crossref]

Ukr. Fiz. Zh. (1)

M. Goul’kov and S. Odoulov, “Self-diffraction in anisotropic nonlinear media in configurations forbidden by symmetry considerations,” Ukr. Fiz. Zh. 56, 193–199 (1991).

Other (1)

B. Sturman and V. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon & Breach, Philadelphia, Pa., 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic representation of the experimental setup: M’s, mirrors; PRC, photorefractive crystal; other abbreviations are defined in text.

Fig. 2
Fig. 2

A, Intensity distribution on the screen placed 20 cm behind the sample in the direction of the propagation of waves 1 and 3. Two bright dots mark the positions of the transmitted incident waves. B, Grating vector diagram to explain the parametric conical scattering. The tips of the wave vectors of the signal (3) and the pump (1) waves are labeled o and e; the tips of the wave vectors of the scattered waves are labeled s and i.

Fig. 3
Fig. 3

Far-field intensity distributions, A, for two pump waves and an initial signal wave; B, for a distorted signal wave; C, for a conjugate beam passing back through the distorter (lens). The divergence of the beam in B is 0.5°.

Fig. 4
Fig. 4

Temporal development of A, the total intensity of the conical scattering, and of B, the phase-conjugate (PC) beam intensity. Two extraordinary pump waves permanently illuminate the sample while the signal wave is switched on at t=30 s.

Fig. 5
Fig. 5

Steady-state intensity of the phase-conjugate (PC) wave as a function of the overall intensity of copropagating waves 1 and 3. The power of the readout wave 2 is 0.5 mW.

Fig. 6
Fig. 6

A, Phase conjugate (PC) wave intensity and B, scattered light intensity versus the intensity ratio of the signal wave to the copropagating pump wave. The intensity of the counterpropagating pump wave is 10 times smaller than that of the copropagating pump wave.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k1e+k3o=kso+kio,
K=k1e-k3o=k4o-k2e.
ηs=(I3o/I1e)[IΣs(l)/2IΣ]2,
IΣs(l)exp(Γl),

Metrics