Abstract

A semiconductor photoinduced electromotive-force detector is used to measure the square of the electric-field correlation of nominal 100-fs laser pulses. For transform-limited pulses, this measurement gives the intensity correlation and thus directly gives the pulse width. The photoinduced electromotive-force technique using semi-insulating GaAs:Cr performs detection that is linear in intensity, making it possible to characterize weak femtosecond pulses with an average power of microwatts.

[Optical Society of America ]

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Baltuska , Z. Wei , M. S. Pshenichnikov , and D. A. Wiersma , Opt. Lett. OPLEDP 22 , 102 ( 1997
    [CrossRef] [PubMed]
  2. K. Naganuma , K. Mogi , and H. Yamada , IEEE J. Quantum Electron. IEJQA7 25 , 1225 ( 1989
    [CrossRef]
  3. R. Trebino , C. Hayden , A. M. Johnson , W. M. Simpson , and A. M. Levine , Opt. Lett. OPLEDP 15 , 1079 ( 1990
    [CrossRef] [PubMed]
  4. J. A. Armstrong , Appl. Phys. Lett. APPLAB 10 , 16 ( 1967
    [CrossRef]
  5. J.-C. Diels , J. J. Fontaine , I. C. McMichael , and F. Simoni , Appl. Opt. APOPAI 24 , 1270 ( 1985
    [CrossRef]
  6. M. Sheik-Bahae , Opt. Lett. OPLEDP 22 , 399 ( 1997
    [CrossRef] [PubMed]
  7. W. Rudolph , M. Sheik-Bahae , A. Bernstein , and L. F. Lester , Opt. Lett. OPLEDP 22 , 313 ( 1997
    [CrossRef] [PubMed]
  8. D. T. Reid , M. Padgett , C. McGowan , W. E. Sleat , and W. Sibbett , Opt. Lett. OPLEDP 22 , 233 ( 1997
    [CrossRef] [PubMed]
  9. M. P. Petrov , S. I. Stepanov , and G. S. Trofimov , Sov. Tech. Phys. Lett. STPLD2 12 , 379 ( 1986
  10. I. A. Sokolov and S. I. Stepanov , J. Opt. Soc. Am. B JOBPDE 10 , 1483 ( 1993
    [CrossRef]
  11. F. M. Davidson , C. C. Wang , C. T. Field , and S. Trivedi , Opt. Lett. OPLEDP 19 , 478 ( 1994
    [CrossRef] [PubMed]
  12. M. P. Petrov , I. A. Sokolov , S. I. Stepanov , and G. S. Trofimov , J. Appl. Phys. JAPIAU 68 , 2216 ( 1990
    [CrossRef]
  13. R. M. Brubaker , Q. N. Wang , D. D. Nolte , E. S. Harmon , and M. R. Melloch , J. Opt. Soc. Am. B JOBPDE 11 , 1038 ( 1994
    [CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup showing the non-steady-state photo-EMF technique to characterize femtosecond pulses. BS, beam splitter.

Fig. 2
Fig. 2

Electric-field autocorrelation of the reference laser pulse. The FWHM of the envelope of the interferometric trace was found to be 184 fs, resulting in a pulse width of 92 fs for the reference pulse.

Fig. 3
Fig. 3

Electric-field cross correlation between the signal pulse transmitted through the EO modulator and the reference pulse. The FWHM of the envelope is tS,R=314 fs, leading to a broadened pulse width of 202 fs for the signal pulse.

Fig. 4
Fig. 4

Typical photo-EMF trace, which produces the square of the electric-field cross correlation of the femtosecond pulses directly without requiring data analysis.

Fig. 5
Fig. 5

Intensity dependence of the photo-EMF (PEMF) signal, showing the linearity with intensity over almost 4 orders of magnitude, detectable at incident powers of microwatts. Also shown is the extracted FWHM, which remains constant across this intensity regime.

Fig. 6
Fig. 6

Photo-EMF (PEMF) signal as a function of the square of the nominal intensity modulation m02.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E(t, τ)=ES(t)+ER(t-τ)=ESfS(t)exp(-iωLt+ikSr)+ERfR(t-τ)exp[-iωL(t-τ)+ikRr],
I(t, τ)=IS|fS(t)|2+IR|fR(t-τ)|2+ISIRfS(t)fR*(t-τ)exp(-iωLτ)exp(iKx)+c.c.,
I(τ)=-I(t, τ)dt=I0{1+½m0gS,R(τ)exp[i(Kx-ωLτ)]+c.c.}=I0{1+½m(τ)exp[i(Kx-ωLτ)]+c.c.},
m(τ)=m0gS,R(τ),
gS,R(τ)=-fS(t)fR*(t-τ)dt.
gS,R(τ)=exp-2 ln 2 τ2tS2+tR2.
m(t, τ)=m(τ)exp(iΔ cos ωt).
jω=m(τ)2Δ2 σ01+K2LD2 ED -iω/ω01+iω/ω0,
ω0=1τM(1+K2LD2)
tS,R=tS2+tR2.

Metrics