Abstract

We optimize the ring self-pumped phase-conjugate mirror at 1.06 μm. With cw as well as nanosecond illumination the photorefractive efficiency is higher than 90%. Therefore the reflectivity (79%) is limited only by the transmission of the loop. Another relevant characteristic is the time needed to increase the reflectivity from 10% to 90% of its maximum value, which is as little as 12 s at 5 W cm-2 in the cw regime. In the nanosecond regime, 90 J cm-2 is needed. We study the response to an abrupt change in the incident wave front, taking into account the three-prism system inserted in the loop.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Mager, G. Pauliat, D. Rytz, and G. Roosen, in Novel Optical Materials & Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1996), Chap. 6, pp. 149–174.
  2. S. MacCormack, G. D. Bacher, J. Feinberg, S. O’Brien, R. J. Lang, M. B. Klein, and B. A. Wechsler, “Powerful, diffraction limited semiconductor laser using photorefractive beam coupling,” Opt. Lett. 22, 227 (1997).
    [Crossref] [PubMed]
  3. J. M. Verdiell, H. Rajbenbach, and J. P. Huignard, “Injection-locking of gain-guided diode laser arrays: influence of the master beam shape,” IEEE Photonics Technol. Lett. 2, 568 (1990).
    [Crossref]
  4. M. Cronin-Golomb, K. Y. Lau, and A. Yariv, “Infrared photorefractive passive phase conjugation with BaTiO3: demonstration with GaAlAs and 1.09 μmAr+ lasers,” Appl. Phys. Lett. 47, 567 (1985).
    [Crossref]
  5. B. A. Wechsler, M. B. Klein, C. C. Nelson, and R. N. Schwartz, “Spectroscopic and photorefractive properties of infrared-sensitive rhodium-doped barium titanate,” Opt. Lett. 19, 536 (1994).
    [Crossref] [PubMed]
  6. A. Brignon, D. Geffroy, J. P. Huignard, M. H. Garrett, and I. Mnushkina, “Experimental investigations of the photorefractive properties of rhodium-doped BaTiO3 at 1.06 μm,” Opt. Commun. 137, 311 (1997).
    [Crossref]
  7. N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 μm,” Opt. Commun. 135, 133 (1997).
    [Crossref]
  8. N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Two-wave mixing in photorefractive BaTiO3:Rh at 1.06 μm in the nanosecond regime,” Opt. Lett. 22, 976 (1997).
    [Crossref] [PubMed]
  9. G. C. Valley, “Short pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. QE-19, 1637 (1983).
    [Crossref]
  10. M. J. Damzen and N. Barry, “Intensity-dependent hole–electron competition and photocarrier saturation in BaTiO3 when using intense laser pulses,” J. Opt. Soc. Am. B 10, 600 (1993).
    [Crossref]
  11. N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Self-pumped phase conjugation in a ring cavity at 1.06 μm in the cw and nanosecond regimes using photorefractive BaTiO3:Rh,” Opt. Commun. 140, 296 (1997).
    [Crossref]
  12. N. Huot, J. M. C. Jonathan, and G. Roosen, “Validity of the three charge state model in photorefractive BaTiO3:Rh at 1.06 μm in the cw regime,” Appl. Phys. B 65, 489 (1997).
    [Crossref]
  13. M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12 (1984).
    [Crossref]
  14. M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in passive phase conjugate mirrors,” Appl. Phys. Lett. 47, 1131 (1985).
    [Crossref]
  15. V. T. Tikhonchuk and A. A. Zozulya, “Structure of light beams in self-pumped four-wave mixing geometries for phase conjugation and mutual conjugation,” Prog. Quantum Electron. 15, 231 (1991).
    [Crossref]
  16. N. V. Bogodaev, L. I. Ivleva, A. S. Korshunov, A. V. Mamaev, N. N. Poloskov, and A. A. Zozulya, “Geometry of a self-pumped passive ring mirror in crystals with strong fanning,” J. Opt. Soc. Am. B 10, 1054 (1993).
    [Crossref]
  17. H. Kröse, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B: Photophys. Laser Chem. 61, 1 (1995).
    [Crossref]
  18. K. Buse, “Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods,” Appl. Phys. B 64, 273 (1997).
    [Crossref]
  19. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
    [Crossref]
  20. G. Pauliat, M. Ingold, and P. Günter, “Analysis of the build up of oscillations in self-induced photorefractive light resonators,” IEEE J. Quantum Electron. 25, 201 (1989).
    [Crossref]
  21. P. Bernasconi, M. Zgonik, and P. Günter, “Temperature dependence and dispersion of electro-optic and elasto-optic effect in perovskite crystals,” J. Appl. Phys. 78, 2651 (1995).
    [Crossref]
  22. S. A. Korolkov, Y. S. Kuzminov, A. V. Mamaev, V. V. Skhunov, and A. A. Zozulya, “Spatial structure of scattered radiation in a self-pumped photorefractive passive ring mirror,” J. Opt. Soc. Am. B 9, 664 (1992).
    [Crossref]
  23. L. Mager, C. Lacquarnoy, G. Pauliat, M. H. Garrett, D. Rytz, and G. Roosen, “High-quality self-pumped phase conjugation of nanosecond pulses at 532 nm using photorefractive BaTiO3,” Opt. Lett. 19, 1508 (1994).
    [Crossref] [PubMed]
  24. J. K. Timinski, C. D. Nabors, G. Frangineas, and D. K. Negus, in Advanced Solid-State Lasers, Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), paper MD2.
  25. A. Brignon, J. P. Huignard, M. H. Garrett, and I. Mnushkina, “Nd:YAG master-oscillator power amplifier with a rhodium-doped BaTiO3 self-pumped phase-conjugate mirror,” Opt. Lett. 22, 442 (1997).
    [Crossref] [PubMed]

1997 (8)

A. Brignon, D. Geffroy, J. P. Huignard, M. H. Garrett, and I. Mnushkina, “Experimental investigations of the photorefractive properties of rhodium-doped BaTiO3 at 1.06 μm,” Opt. Commun. 137, 311 (1997).
[Crossref]

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 μm,” Opt. Commun. 135, 133 (1997).
[Crossref]

N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Self-pumped phase conjugation in a ring cavity at 1.06 μm in the cw and nanosecond regimes using photorefractive BaTiO3:Rh,” Opt. Commun. 140, 296 (1997).
[Crossref]

N. Huot, J. M. C. Jonathan, and G. Roosen, “Validity of the three charge state model in photorefractive BaTiO3:Rh at 1.06 μm in the cw regime,” Appl. Phys. B 65, 489 (1997).
[Crossref]

K. Buse, “Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods,” Appl. Phys. B 64, 273 (1997).
[Crossref]

S. MacCormack, G. D. Bacher, J. Feinberg, S. O’Brien, R. J. Lang, M. B. Klein, and B. A. Wechsler, “Powerful, diffraction limited semiconductor laser using photorefractive beam coupling,” Opt. Lett. 22, 227 (1997).
[Crossref] [PubMed]

A. Brignon, J. P. Huignard, M. H. Garrett, and I. Mnushkina, “Nd:YAG master-oscillator power amplifier with a rhodium-doped BaTiO3 self-pumped phase-conjugate mirror,” Opt. Lett. 22, 442 (1997).
[Crossref] [PubMed]

N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Two-wave mixing in photorefractive BaTiO3:Rh at 1.06 μm in the nanosecond regime,” Opt. Lett. 22, 976 (1997).
[Crossref] [PubMed]

1995 (2)

H. Kröse, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B: Photophys. Laser Chem. 61, 1 (1995).
[Crossref]

P. Bernasconi, M. Zgonik, and P. Günter, “Temperature dependence and dispersion of electro-optic and elasto-optic effect in perovskite crystals,” J. Appl. Phys. 78, 2651 (1995).
[Crossref]

1994 (2)

1993 (2)

1992 (1)

1991 (1)

V. T. Tikhonchuk and A. A. Zozulya, “Structure of light beams in self-pumped four-wave mixing geometries for phase conjugation and mutual conjugation,” Prog. Quantum Electron. 15, 231 (1991).
[Crossref]

1990 (1)

J. M. Verdiell, H. Rajbenbach, and J. P. Huignard, “Injection-locking of gain-guided diode laser arrays: influence of the master beam shape,” IEEE Photonics Technol. Lett. 2, 568 (1990).
[Crossref]

1989 (1)

G. Pauliat, M. Ingold, and P. Günter, “Analysis of the build up of oscillations in self-induced photorefractive light resonators,” IEEE J. Quantum Electron. 25, 201 (1989).
[Crossref]

1985 (2)

M. Cronin-Golomb, K. Y. Lau, and A. Yariv, “Infrared photorefractive passive phase conjugation with BaTiO3: demonstration with GaAlAs and 1.09 μmAr+ lasers,” Appl. Phys. Lett. 47, 567 (1985).
[Crossref]

M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in passive phase conjugate mirrors,” Appl. Phys. Lett. 47, 1131 (1985).
[Crossref]

1984 (1)

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12 (1984).
[Crossref]

1983 (1)

G. C. Valley, “Short pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. QE-19, 1637 (1983).
[Crossref]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[Crossref]

Bacher, G. D.

Barry, N.

Bernasconi, P.

P. Bernasconi, M. Zgonik, and P. Günter, “Temperature dependence and dispersion of electro-optic and elasto-optic effect in perovskite crystals,” J. Appl. Phys. 78, 2651 (1995).
[Crossref]

Bogodaev, N. V.

Brignon, A.

A. Brignon, D. Geffroy, J. P. Huignard, M. H. Garrett, and I. Mnushkina, “Experimental investigations of the photorefractive properties of rhodium-doped BaTiO3 at 1.06 μm,” Opt. Commun. 137, 311 (1997).
[Crossref]

A. Brignon, J. P. Huignard, M. H. Garrett, and I. Mnushkina, “Nd:YAG master-oscillator power amplifier with a rhodium-doped BaTiO3 self-pumped phase-conjugate mirror,” Opt. Lett. 22, 442 (1997).
[Crossref] [PubMed]

Buse, K.

K. Buse, “Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods,” Appl. Phys. B 64, 273 (1997).
[Crossref]

Cronin-Golomb, M.

M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in passive phase conjugate mirrors,” Appl. Phys. Lett. 47, 1131 (1985).
[Crossref]

M. Cronin-Golomb, K. Y. Lau, and A. Yariv, “Infrared photorefractive passive phase conjugation with BaTiO3: demonstration with GaAlAs and 1.09 μmAr+ lasers,” Appl. Phys. Lett. 47, 567 (1985).
[Crossref]

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12 (1984).
[Crossref]

Damzen, M. J.

Feinberg, J.

Fischer, B.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12 (1984).
[Crossref]

Frangineas, G.

J. K. Timinski, C. D. Nabors, G. Frangineas, and D. K. Negus, in Advanced Solid-State Lasers, Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), paper MD2.

Garrett, M. H.

Geffroy, D.

A. Brignon, D. Geffroy, J. P. Huignard, M. H. Garrett, and I. Mnushkina, “Experimental investigations of the photorefractive properties of rhodium-doped BaTiO3 at 1.06 μm,” Opt. Commun. 137, 311 (1997).
[Crossref]

Günter, P.

P. Bernasconi, M. Zgonik, and P. Günter, “Temperature dependence and dispersion of electro-optic and elasto-optic effect in perovskite crystals,” J. Appl. Phys. 78, 2651 (1995).
[Crossref]

G. Pauliat, M. Ingold, and P. Günter, “Analysis of the build up of oscillations in self-induced photorefractive light resonators,” IEEE J. Quantum Electron. 25, 201 (1989).
[Crossref]

Hesse, H.

H. Kröse, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B: Photophys. Laser Chem. 61, 1 (1995).
[Crossref]

Huignard, J. P.

A. Brignon, D. Geffroy, J. P. Huignard, M. H. Garrett, and I. Mnushkina, “Experimental investigations of the photorefractive properties of rhodium-doped BaTiO3 at 1.06 μm,” Opt. Commun. 137, 311 (1997).
[Crossref]

A. Brignon, J. P. Huignard, M. H. Garrett, and I. Mnushkina, “Nd:YAG master-oscillator power amplifier with a rhodium-doped BaTiO3 self-pumped phase-conjugate mirror,” Opt. Lett. 22, 442 (1997).
[Crossref] [PubMed]

J. M. Verdiell, H. Rajbenbach, and J. P. Huignard, “Injection-locking of gain-guided diode laser arrays: influence of the master beam shape,” IEEE Photonics Technol. Lett. 2, 568 (1990).
[Crossref]

Huot, N.

N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Self-pumped phase conjugation in a ring cavity at 1.06 μm in the cw and nanosecond regimes using photorefractive BaTiO3:Rh,” Opt. Commun. 140, 296 (1997).
[Crossref]

N. Huot, J. M. C. Jonathan, and G. Roosen, “Validity of the three charge state model in photorefractive BaTiO3:Rh at 1.06 μm in the cw regime,” Appl. Phys. B 65, 489 (1997).
[Crossref]

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 μm,” Opt. Commun. 135, 133 (1997).
[Crossref]

N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Two-wave mixing in photorefractive BaTiO3:Rh at 1.06 μm in the nanosecond regime,” Opt. Lett. 22, 976 (1997).
[Crossref] [PubMed]

Ingold, M.

G. Pauliat, M. Ingold, and P. Günter, “Analysis of the build up of oscillations in self-induced photorefractive light resonators,” IEEE J. Quantum Electron. 25, 201 (1989).
[Crossref]

Ivleva, L. I.

Jonathan, J. M. C.

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 μm,” Opt. Commun. 135, 133 (1997).
[Crossref]

N. Huot, J. M. C. Jonathan, and G. Roosen, “Validity of the three charge state model in photorefractive BaTiO3:Rh at 1.06 μm in the cw regime,” Appl. Phys. B 65, 489 (1997).
[Crossref]

N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Self-pumped phase conjugation in a ring cavity at 1.06 μm in the cw and nanosecond regimes using photorefractive BaTiO3:Rh,” Opt. Commun. 140, 296 (1997).
[Crossref]

N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Two-wave mixing in photorefractive BaTiO3:Rh at 1.06 μm in the nanosecond regime,” Opt. Lett. 22, 976 (1997).
[Crossref] [PubMed]

Klein, M. B.

Korolkov, S. A.

Korshunov, A. S.

Kröse, H.

H. Kröse, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B: Photophys. Laser Chem. 61, 1 (1995).
[Crossref]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[Crossref]

Kuzminov, Y. S.

Lacquarnoy, C.

Lang, R. J.

Lau, K. Y.

M. Cronin-Golomb, K. Y. Lau, and A. Yariv, “Infrared photorefractive passive phase conjugation with BaTiO3: demonstration with GaAlAs and 1.09 μmAr+ lasers,” Appl. Phys. Lett. 47, 567 (1985).
[Crossref]

MacCormack, S.

Mager, L.

L. Mager, C. Lacquarnoy, G. Pauliat, M. H. Garrett, D. Rytz, and G. Roosen, “High-quality self-pumped phase conjugation of nanosecond pulses at 532 nm using photorefractive BaTiO3,” Opt. Lett. 19, 1508 (1994).
[Crossref] [PubMed]

L. Mager, G. Pauliat, D. Rytz, and G. Roosen, in Novel Optical Materials & Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1996), Chap. 6, pp. 149–174.

Mamaev, A. V.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[Crossref]

Mnushkina, I.

A. Brignon, D. Geffroy, J. P. Huignard, M. H. Garrett, and I. Mnushkina, “Experimental investigations of the photorefractive properties of rhodium-doped BaTiO3 at 1.06 μm,” Opt. Commun. 137, 311 (1997).
[Crossref]

A. Brignon, J. P. Huignard, M. H. Garrett, and I. Mnushkina, “Nd:YAG master-oscillator power amplifier with a rhodium-doped BaTiO3 self-pumped phase-conjugate mirror,” Opt. Lett. 22, 442 (1997).
[Crossref] [PubMed]

Nabors, C. D.

J. K. Timinski, C. D. Nabors, G. Frangineas, and D. K. Negus, in Advanced Solid-State Lasers, Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), paper MD2.

Negus, D. K.

J. K. Timinski, C. D. Nabors, G. Frangineas, and D. K. Negus, in Advanced Solid-State Lasers, Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), paper MD2.

Nelson, C. C.

O’Brien, S.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[Crossref]

Paslaski, J.

M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in passive phase conjugate mirrors,” Appl. Phys. Lett. 47, 1131 (1985).
[Crossref]

Pauliat, G.

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 μm,” Opt. Commun. 135, 133 (1997).
[Crossref]

L. Mager, C. Lacquarnoy, G. Pauliat, M. H. Garrett, D. Rytz, and G. Roosen, “High-quality self-pumped phase conjugation of nanosecond pulses at 532 nm using photorefractive BaTiO3,” Opt. Lett. 19, 1508 (1994).
[Crossref] [PubMed]

G. Pauliat, M. Ingold, and P. Günter, “Analysis of the build up of oscillations in self-induced photorefractive light resonators,” IEEE J. Quantum Electron. 25, 201 (1989).
[Crossref]

L. Mager, G. Pauliat, D. Rytz, and G. Roosen, in Novel Optical Materials & Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1996), Chap. 6, pp. 149–174.

Poloskov, N. N.

Rajbenbach, H.

J. M. Verdiell, H. Rajbenbach, and J. P. Huignard, “Injection-locking of gain-guided diode laser arrays: influence of the master beam shape,” IEEE Photonics Technol. Lett. 2, 568 (1990).
[Crossref]

Roosen, G.

N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Self-pumped phase conjugation in a ring cavity at 1.06 μm in the cw and nanosecond regimes using photorefractive BaTiO3:Rh,” Opt. Commun. 140, 296 (1997).
[Crossref]

N. Huot, J. M. C. Jonathan, and G. Roosen, “Validity of the three charge state model in photorefractive BaTiO3:Rh at 1.06 μm in the cw regime,” Appl. Phys. B 65, 489 (1997).
[Crossref]

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 μm,” Opt. Commun. 135, 133 (1997).
[Crossref]

N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Two-wave mixing in photorefractive BaTiO3:Rh at 1.06 μm in the nanosecond regime,” Opt. Lett. 22, 976 (1997).
[Crossref] [PubMed]

L. Mager, C. Lacquarnoy, G. Pauliat, M. H. Garrett, D. Rytz, and G. Roosen, “High-quality self-pumped phase conjugation of nanosecond pulses at 532 nm using photorefractive BaTiO3,” Opt. Lett. 19, 1508 (1994).
[Crossref] [PubMed]

L. Mager, G. Pauliat, D. Rytz, and G. Roosen, in Novel Optical Materials & Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1996), Chap. 6, pp. 149–174.

Rytz, D.

N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Self-pumped phase conjugation in a ring cavity at 1.06 μm in the cw and nanosecond regimes using photorefractive BaTiO3:Rh,” Opt. Commun. 140, 296 (1997).
[Crossref]

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 μm,” Opt. Commun. 135, 133 (1997).
[Crossref]

N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Two-wave mixing in photorefractive BaTiO3:Rh at 1.06 μm in the nanosecond regime,” Opt. Lett. 22, 976 (1997).
[Crossref] [PubMed]

L. Mager, C. Lacquarnoy, G. Pauliat, M. H. Garrett, D. Rytz, and G. Roosen, “High-quality self-pumped phase conjugation of nanosecond pulses at 532 nm using photorefractive BaTiO3,” Opt. Lett. 19, 1508 (1994).
[Crossref] [PubMed]

L. Mager, G. Pauliat, D. Rytz, and G. Roosen, in Novel Optical Materials & Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1996), Chap. 6, pp. 149–174.

Scharfschwerdt, R.

H. Kröse, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B: Photophys. Laser Chem. 61, 1 (1995).
[Crossref]

Schirmer, O. F.

H. Kröse, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B: Photophys. Laser Chem. 61, 1 (1995).
[Crossref]

Schwartz, R. N.

Skhunov, V. V.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[Crossref]

Tikhonchuk, V. T.

V. T. Tikhonchuk and A. A. Zozulya, “Structure of light beams in self-pumped four-wave mixing geometries for phase conjugation and mutual conjugation,” Prog. Quantum Electron. 15, 231 (1991).
[Crossref]

Timinski, J. K.

J. K. Timinski, C. D. Nabors, G. Frangineas, and D. K. Negus, in Advanced Solid-State Lasers, Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), paper MD2.

Valley, G. C.

G. C. Valley, “Short pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. QE-19, 1637 (1983).
[Crossref]

Verdiell, J. M.

J. M. Verdiell, H. Rajbenbach, and J. P. Huignard, “Injection-locking of gain-guided diode laser arrays: influence of the master beam shape,” IEEE Photonics Technol. Lett. 2, 568 (1990).
[Crossref]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[Crossref]

Wechsler, B. A.

White, J. O.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12 (1984).
[Crossref]

Yariv, A.

M. Cronin-Golomb, K. Y. Lau, and A. Yariv, “Infrared photorefractive passive phase conjugation with BaTiO3: demonstration with GaAlAs and 1.09 μmAr+ lasers,” Appl. Phys. Lett. 47, 567 (1985).
[Crossref]

M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in passive phase conjugate mirrors,” Appl. Phys. Lett. 47, 1131 (1985).
[Crossref]

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12 (1984).
[Crossref]

Zgonik, M.

P. Bernasconi, M. Zgonik, and P. Günter, “Temperature dependence and dispersion of electro-optic and elasto-optic effect in perovskite crystals,” J. Appl. Phys. 78, 2651 (1995).
[Crossref]

Zozulya, A. A.

Appl. Phys. B (2)

N. Huot, J. M. C. Jonathan, and G. Roosen, “Validity of the three charge state model in photorefractive BaTiO3:Rh at 1.06 μm in the cw regime,” Appl. Phys. B 65, 489 (1997).
[Crossref]

K. Buse, “Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods,” Appl. Phys. B 64, 273 (1997).
[Crossref]

Appl. Phys. B: Photophys. Laser Chem. (1)

H. Kröse, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B: Photophys. Laser Chem. 61, 1 (1995).
[Crossref]

Appl. Phys. Lett. (2)

M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in passive phase conjugate mirrors,” Appl. Phys. Lett. 47, 1131 (1985).
[Crossref]

M. Cronin-Golomb, K. Y. Lau, and A. Yariv, “Infrared photorefractive passive phase conjugation with BaTiO3: demonstration with GaAlAs and 1.09 μmAr+ lasers,” Appl. Phys. Lett. 47, 567 (1985).
[Crossref]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[Crossref]

IEEE J. Quantum Electron. (3)

G. Pauliat, M. Ingold, and P. Günter, “Analysis of the build up of oscillations in self-induced photorefractive light resonators,” IEEE J. Quantum Electron. 25, 201 (1989).
[Crossref]

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12 (1984).
[Crossref]

G. C. Valley, “Short pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. QE-19, 1637 (1983).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. M. Verdiell, H. Rajbenbach, and J. P. Huignard, “Injection-locking of gain-guided diode laser arrays: influence of the master beam shape,” IEEE Photonics Technol. Lett. 2, 568 (1990).
[Crossref]

J. Appl. Phys. (1)

P. Bernasconi, M. Zgonik, and P. Günter, “Temperature dependence and dispersion of electro-optic and elasto-optic effect in perovskite crystals,” J. Appl. Phys. 78, 2651 (1995).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt. Commun. (3)

N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Self-pumped phase conjugation in a ring cavity at 1.06 μm in the cw and nanosecond regimes using photorefractive BaTiO3:Rh,” Opt. Commun. 140, 296 (1997).
[Crossref]

A. Brignon, D. Geffroy, J. P. Huignard, M. H. Garrett, and I. Mnushkina, “Experimental investigations of the photorefractive properties of rhodium-doped BaTiO3 at 1.06 μm,” Opt. Commun. 137, 311 (1997).
[Crossref]

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 μm,” Opt. Commun. 135, 133 (1997).
[Crossref]

Opt. Lett. (5)

Prog. Quantum Electron. (1)

V. T. Tikhonchuk and A. A. Zozulya, “Structure of light beams in self-pumped four-wave mixing geometries for phase conjugation and mutual conjugation,” Prog. Quantum Electron. 15, 231 (1991).
[Crossref]

Other (2)

J. K. Timinski, C. D. Nabors, G. Frangineas, and D. K. Negus, in Advanced Solid-State Lasers, Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), paper MD2.

L. Mager, G. Pauliat, D. Rytz, and G. Roosen, in Novel Optical Materials & Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1996), Chap. 6, pp. 149–174.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the ring self-pumped phase-conjugate mirror. Phase-conjugate beams are observed in optical plane (P). PZT, piezo mirror used in the cw illumination regime.

Fig. 2
Fig. 2

Reflectivity of the ring self-pumped phase-conjugate mirror versus transmission of the loop in the cw illumination regime at 1.06 μm. Experimental data are fitted by theoretical curves obtained with different values of the product Γl.

Fig. 3
Fig. 3

Typical experimental time evolution of the reflectivity of the ring self-pumped phase-conjugate mirror at 1.06 μm in the cw illumination regime. This curve is obtained for an intensity of 5 W cm-2.

Fig. 4
Fig. 4

Predicted Γl, photorefractive rise time τph, and reflectivity rise time τ90%-τ10% versus incidence angle θ on the photorefractive crystal (see text for choice of parameters).

Fig. 5
Fig. 5

Experimental values of τ90%-τ10% for several incidence angles θ. To compensate for the variations of transmission T of the loop with θ, for a given θ τ90%-τ10% is to be compared with the value obtained at θ=20° for the same T.

Fig. 6
Fig. 6

Ring self-pumped phase-conjugate mirror with a three-prism system performing a 90° rotation of the beam cross section. The loop length is 12 cm.

Fig. 7
Fig. 7

a, Phase-conjugate beam profile from a loop using conventional mirrors. The poor fidelity of the phase conjugation appears in the vertical structure of the image. b, Phase-conjugate beam profile with the three prisms. c, Incident beam profile. All the images were obtained in the nanosecond illumination regime at 1.06 μm.

Fig. 8
Fig. 8

Notation used in Section 5. y=0 is the incidence plane. The mirror signs represent the loop mirrors. The loop length is assumed to be much smaller than the focal length of the thermal lens to be corrected for. Wave A2R converges at C2R (x2R, 0, z2R). At steady state it is diffracted as A3R originating from C3R (x2R, 0,-z2R). The photorefractive crystal is centered at (0, 0, 0). A2A is the wave resulting from an abrupt change in the thermal lens; it is now converging at C2A (x2A, 0, z2A); it is diffracted as A3A originating from C3A (x3A, 0, -z3A).

Fig. 9
Fig. 9

Experimental check on relation (13) at 1.06 μm in the nanosecond illumination regime: a, phase-conjugate beam image without aberration (lens) in the incident beam path; b, calculated and c, observed transient beam image when an f=1.3 m focal-length lens is inserted into the incident beam path. d, e, The same results with f=0.5 m. Although the experimental result is a distorted version of the predicted cross pattern, it is quite reproducible. All the images are calculated with no free parameter.

Fig. 10
Fig. 10

Computed variations of the reflectivity and of the overlap integral between the real and the expected transient phase-conjugate beams versus the convergence of the aberrator introduced on the incident collimated beam. For clarity these values are normalized to their maxima.

Fig. 11
Fig. 11

Experimental time evolution of the reflectivity. At t=25 min a diverging lens (f=-1 m) is introduced into the incident beam. The slower recovery is caused by the poor overlap integral between the transient diffracted beam and the phase-conjugate beam obtained only at steady state.

Tables (1)

Tables Icon

Table 1 Relevant Parameters for BaTiO3:Rh Crystals Characterized at 1.06 μm in the cw Illumination Regime a

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

A1(z, t)z=i Γ4Esc E1(z, t)A4(z, t),
A2*(z, t)z=i Γ4Esc E1(z, t)A3*(z, t),
A3(z, t)z=-i Γ4Esc E1(z, t)A2(z, t),
A4*(z, t)z=-i Γ4Esc E1(z, t)A1*(z, t),
E1(z, t)t=-1τph [E1(z, t)-im(z, t)Esc],
m(z, t)=2(A1A4*+A2*A3)/I0.
A2R=e^y a2Rr2R exp(-iωt)exp[ik(z-z2R)]×exp-iπλz2R [(x-x2R)2+y2]1+zz2R,
A3R=e^y a3Rr2R exp(-iωt)exp[ik(z+z2R)]×expiπλz2R [(x-x2R)2+y2]1-zz2R,
ΔnΔn0 exp(2ikz2R)exp2i πλz2R [(x-x2R)2+y2].
A2A=e^y a2Ar2A exp(-iωt)exp[ik(z-z2A)]×exp-iπλz2A [(x-x2A)2+y2]1+zz2A,
2A3A+k2A3A=-k2 [Δε]n2 A2A,
e^y*[Δε]e^y=2nΔn.
A3A=e^y a3A(x, y, z)r3A exp(-iωt)exp[ik(z+z3A)]×expiπλz3A [(x-x3A)2+y2]1-zz3A,
x3Az3A=x2Az2A=x2Rz2R,1z3A+1z2A=2z2R,
a3A(l)sinc(x-x3A)2+y2z3A2-(x-x2A)2+y2z2A2 l2λ.
Isinc(x-x3A)2+y2z3A2-(x-x2A)2+y2z2A2 l2λ+sinc(y-x3A)2+x2z3A2-(y-x2A)2+x2z2A2 l2λ2.
Δαtt=0,I=1.1 W cm-2

Metrics