Abstract

We demonstrate spatial filtering by using the azo-chromophore-based nonlinear optical effect of self-beam polarization modulation and optical threshold processing. The real-time image-processing scheme is described by use of an optical configuration composed of an action-beam–probe-beam system, Fourier-transform operation, and an azo-chromophore-doped film as a spatial filter. As Disperse Red 1 dye (DR1) doped in an N-poly(vinylcarbazole) (PVK) film with N-ethylcarbazole (ECZ) of low glass-transition temperature exhibits self-polarization rotation after thin-film transmission, a linearly polarized probe beam in the film is observed, even through a crossed analyzer. In addition, this film permits optical threshold processing by introducing an action beam with different intensity and wavelength from those of the probe beam with object information. Changing the action-beam intensity results in a decrease or an increase in the transmitted probe-beam power through the analyzer. When a DR1–PVK–ECZ film is placed at the Fourier plane on the probe-beam path, the filter functions can be modulated in real time by manipulation of the intensity ratio between the action beam and the spatial-frequency components at the film plane. The spatial frequencies of an original input image can be manipulated as they pass through the film. These effects are responsible for the photoisomerization of DR1 molecules in the low-glass-transition-temperature polymer matrix.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Calixto and R. A. Lessard, “Holographic recording and reconstruction of polarized light with dyed plastic,” Appl. Opt. 23, 4313–4318 (1984).
    [CrossRef] [PubMed]
  2. T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. QE-22, 1262–1267 (1986).
    [CrossRef]
  3. T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, “Polarization holography. 3. Some applications of polarization holographic recording,” Appl. Opt. 24, 785–788 (1985).
    [CrossRef]
  4. J. J. A. Couture, “Polarization holographic characterization of organic azo dyes/PVA films for real time applications,” Appl. Opt. 30, 2858–2866 (1991).
    [CrossRef] [PubMed]
  5. V. P. Pham, T. Galstyan, A. Granger, and R. A. Lessard, “Novel azo dye-doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. 36, 429–438 (1997).
    [CrossRef]
  6. Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).
  7. C. Egami, K. Nakagawa, and H. Fujiwara, “Phase conjugation in methyl-orange-doped PVA films by photoinduced anisotropy,” Jpn. J. Appl. Phys. 29, 1544–1546 (1990).
    [CrossRef]
  8. S. V. O’Leary, “Real-time image processing by degenerate four-wave mixing in polarization sensitive dye-impregnated polymer films,” Opt. Commun. 104, 245–250 (1994).
    [CrossRef]
  9. L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, “Polarization-preserving wavefront reversal by four-wave mixing in photoanisotropic materials,” Appl. Opt. 27, 1598–1602 (1988).
    [CrossRef] [PubMed]
  10. S. Mailhot, P. Galarneau, R. A. Lessard, and M. Denaries-Roberge, “Degenerate four-wave mixing in organic azo dyes chrysoidin and benzopurpurin 4B,” Appl. Opt. 27, 3418–3421 (1988).
    [CrossRef] [PubMed]
  11. E. Mohajerani, E. Whale, and G. R. Mitchell, “Polarization sensitive optical phase conjugation in novel polymer films,” Opt. Commun. 92, 403–410 (1992).
    [CrossRef]
  12. C. Egami, K. Nakagawa, and H. Fujiwara, “Efficient optical phase conjugation in methyl-orange-doped polyvinyl alcohol film,” Jpn. J. Appl. Phys. 31, 2937–2940 (1992).
    [CrossRef]
  13. S. H. Barley, A. Gilbert, and G. R. Mitchell, “Photoinduced reversible refractive-index changes in tailored siloxane-based polymers,” J. Mater. Chem. 1, 481–482 (1991).
    [CrossRef]
  14. A. Yacoubian and T. M. Aye, “Enhanced optical modulation using azo-dye polymers,” Appl. Opt. 32, 3073–3080 (1993).
    [CrossRef] [PubMed]
  15. R. Thoma, N. Hampp, C. Brauchle, and D. Oesterhelt“Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett. 16, 651–653 (1991).
    [CrossRef] [PubMed]
  16. J. D. Downie, “Nonlinear coherent optical image processing using logarithmic transmittance of bacteriorhodopsin films,” Appl. Opt. 34, 5210–5217 (1995).
    [CrossRef] [PubMed]
  17. J. Joseph, F. J. Aranda, D. V. G. L. N. Rao, J. A. Akkara, and M. Nakashima, “Optical Fourier processing using photoinduced dichroism in a bacteriorhodopsin film,” Opt. Lett. 21, 1499–1501 (1996).
    [CrossRef] [PubMed]
  18. T. Takeda, K. Nakagawa, and H. Fujiwara, “A spatial light modulator using a methyl-red doped polyvinyl alcohol film,” Nonlinear Opt. 7, 295–301 (1994).
  19. B. Fleck and L. Wenke, “The intensity transfer function of a photoanisotropic wavelength-to-wavelength converter,” Opt. Commun. 137, 207–213 (1997).
    [CrossRef]
  20. T. Huang and K. H. Wagner, “Photoanisotropic incoherent-to-coherent optical conversion,” Appl. Opt. 32, 1888–1900 (1993).
    [CrossRef] [PubMed]
  21. H. Takei and N. Shimizu, “Spatial light modulation based on photoinduced change in the complex refractive index of bacteriorhodopsin,” Appl. Opt. 35, 1848–1854 (1996).
    [CrossRef] [PubMed]
  22. T. Okamoto, I. Yamaguchi, S. A. Boothroyd, and J. Chrostowski, “Novelty filter that uses a bacteriorhodopsin film,” Appl. Opt. 36, 508–511 (1997).
    [CrossRef] [PubMed]
  23. J. Kato, I. Yamaguchi, and H. Tanaka, “Nonlinear spatial filtering with a dye-doped liquid-crystal cell,” Opt. Lett. 21, 767–769 (1996).
    [CrossRef] [PubMed]
  24. C. Egami, Y. Suzuki, T. Uemori, O. Sugihara, and N. Okamoto, “Self-adaptive spatial filtering by use of azo chromophores doped in low glass-transition-temperature polymers,” Opt. Lett. 22, 1424–1426 (1997).
    [CrossRef]
  25. T. F. Heinz, C. K. Chen, D. Ricard, and V. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478–481 (1982).
    [CrossRef]
  26. G. Marowsky and A. Gierulski, “Interferometric enhancement of surface-generated second-harmonic radiation,” Appl. Phys. B 34, 69–72 (1984).
    [CrossRef]
  27. C. Jones and S. Day, “Shedding light on alignment,” Nature 351, 15 (1991).
    [CrossRef]
  28. S. B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).

1997 (4)

V. P. Pham, T. Galstyan, A. Granger, and R. A. Lessard, “Novel azo dye-doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. 36, 429–438 (1997).
[CrossRef]

B. Fleck and L. Wenke, “The intensity transfer function of a photoanisotropic wavelength-to-wavelength converter,” Opt. Commun. 137, 207–213 (1997).
[CrossRef]

T. Okamoto, I. Yamaguchi, S. A. Boothroyd, and J. Chrostowski, “Novelty filter that uses a bacteriorhodopsin film,” Appl. Opt. 36, 508–511 (1997).
[CrossRef] [PubMed]

C. Egami, Y. Suzuki, T. Uemori, O. Sugihara, and N. Okamoto, “Self-adaptive spatial filtering by use of azo chromophores doped in low glass-transition-temperature polymers,” Opt. Lett. 22, 1424–1426 (1997).
[CrossRef]

1996 (3)

1995 (1)

1994 (4)

S. B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).

T. Takeda, K. Nakagawa, and H. Fujiwara, “A spatial light modulator using a methyl-red doped polyvinyl alcohol film,” Nonlinear Opt. 7, 295–301 (1994).

Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).

S. V. O’Leary, “Real-time image processing by degenerate four-wave mixing in polarization sensitive dye-impregnated polymer films,” Opt. Commun. 104, 245–250 (1994).
[CrossRef]

1993 (2)

1992 (2)

E. Mohajerani, E. Whale, and G. R. Mitchell, “Polarization sensitive optical phase conjugation in novel polymer films,” Opt. Commun. 92, 403–410 (1992).
[CrossRef]

C. Egami, K. Nakagawa, and H. Fujiwara, “Efficient optical phase conjugation in methyl-orange-doped polyvinyl alcohol film,” Jpn. J. Appl. Phys. 31, 2937–2940 (1992).
[CrossRef]

1991 (4)

1990 (1)

C. Egami, K. Nakagawa, and H. Fujiwara, “Phase conjugation in methyl-orange-doped PVA films by photoinduced anisotropy,” Jpn. J. Appl. Phys. 29, 1544–1546 (1990).
[CrossRef]

1988 (2)

1986 (1)

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. QE-22, 1262–1267 (1986).
[CrossRef]

1985 (1)

1984 (2)

S. Calixto and R. A. Lessard, “Holographic recording and reconstruction of polarized light with dyed plastic,” Appl. Opt. 23, 4313–4318 (1984).
[CrossRef] [PubMed]

G. Marowsky and A. Gierulski, “Interferometric enhancement of surface-generated second-harmonic radiation,” Appl. Phys. B 34, 69–72 (1984).
[CrossRef]

1982 (1)

T. F. Heinz, C. K. Chen, D. Ricard, and V. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478–481 (1982).
[CrossRef]

Akkara, J. A.

Aranda, F. J.

Aye, T. M.

Barley, S. H.

S. H. Barley, A. Gilbert, and G. R. Mitchell, “Photoinduced reversible refractive-index changes in tailored siloxane-based polymers,” J. Mater. Chem. 1, 481–482 (1991).
[CrossRef]

Boothroyd, S. A.

Brauchle, C.

Calixto, S.

Chen, C. K.

T. F. Heinz, C. K. Chen, D. Ricard, and V. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478–481 (1982).
[CrossRef]

Chrostowski, J.

Couture, J. J. A.

Day, S.

C. Jones and S. Day, “Shedding light on alignment,” Nature 351, 15 (1991).
[CrossRef]

Denaries-Roberge, M.

Downie, J. D.

Dragostinova, V.

L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, “Polarization-preserving wavefront reversal by four-wave mixing in photoanisotropic materials,” Appl. Opt. 27, 1598–1602 (1988).
[CrossRef] [PubMed]

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. QE-22, 1262–1267 (1986).
[CrossRef]

Egami, C.

C. Egami, Y. Suzuki, T. Uemori, O. Sugihara, and N. Okamoto, “Self-adaptive spatial filtering by use of azo chromophores doped in low glass-transition-temperature polymers,” Opt. Lett. 22, 1424–1426 (1997).
[CrossRef]

C. Egami, K. Nakagawa, and H. Fujiwara, “Efficient optical phase conjugation in methyl-orange-doped polyvinyl alcohol film,” Jpn. J. Appl. Phys. 31, 2937–2940 (1992).
[CrossRef]

C. Egami, K. Nakagawa, and H. Fujiwara, “Phase conjugation in methyl-orange-doped PVA films by photoinduced anisotropy,” Jpn. J. Appl. Phys. 29, 1544–1546 (1990).
[CrossRef]

Fleck, B.

B. Fleck and L. Wenke, “The intensity transfer function of a photoanisotropic wavelength-to-wavelength converter,” Opt. Commun. 137, 207–213 (1997).
[CrossRef]

Fujiwara, H.

T. Takeda, K. Nakagawa, and H. Fujiwara, “A spatial light modulator using a methyl-red doped polyvinyl alcohol film,” Nonlinear Opt. 7, 295–301 (1994).

C. Egami, K. Nakagawa, and H. Fujiwara, “Efficient optical phase conjugation in methyl-orange-doped polyvinyl alcohol film,” Jpn. J. Appl. Phys. 31, 2937–2940 (1992).
[CrossRef]

C. Egami, K. Nakagawa, and H. Fujiwara, “Phase conjugation in methyl-orange-doped PVA films by photoinduced anisotropy,” Jpn. J. Appl. Phys. 29, 1544–1546 (1990).
[CrossRef]

Galarneau, P.

Galstyan, T.

V. P. Pham, T. Galstyan, A. Granger, and R. A. Lessard, “Novel azo dye-doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. 36, 429–438 (1997).
[CrossRef]

Gierulski, A.

G. Marowsky and A. Gierulski, “Interferometric enhancement of surface-generated second-harmonic radiation,” Appl. Phys. B 34, 69–72 (1984).
[CrossRef]

Gilbert, A.

S. H. Barley, A. Gilbert, and G. R. Mitchell, “Photoinduced reversible refractive-index changes in tailored siloxane-based polymers,” J. Mater. Chem. 1, 481–482 (1991).
[CrossRef]

Granger, A.

V. P. Pham, T. Galstyan, A. Granger, and R. A. Lessard, “Novel azo dye-doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. 36, 429–438 (1997).
[CrossRef]

Hall, H. K.

Hampp, N.

Heinz, T. F.

T. F. Heinz, C. K. Chen, D. Ricard, and V. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478–481 (1982).
[CrossRef]

Huang, T.

Jones, C.

C. Jones and S. Day, “Shedding light on alignment,” Nature 351, 15 (1991).
[CrossRef]

Joseph, J.

Kato, J.

Kippelen, B.

Kippelen, S. B.

Lessard, R. A.

Lyon, S. R.

Mailhot, S.

Marowsky, G.

G. Marowsky and A. Gierulski, “Interferometric enhancement of surface-generated second-harmonic radiation,” Appl. Phys. B 34, 69–72 (1984).
[CrossRef]

Mitchell, G. R.

E. Mohajerani, E. Whale, and G. R. Mitchell, “Polarization sensitive optical phase conjugation in novel polymer films,” Opt. Commun. 92, 403–410 (1992).
[CrossRef]

S. H. Barley, A. Gilbert, and G. R. Mitchell, “Photoinduced reversible refractive-index changes in tailored siloxane-based polymers,” J. Mater. Chem. 1, 481–482 (1991).
[CrossRef]

Mohajerani, E.

E. Mohajerani, E. Whale, and G. R. Mitchell, “Polarization sensitive optical phase conjugation in novel polymer films,” Opt. Commun. 92, 403–410 (1992).
[CrossRef]

Nakagawa, K.

T. Takeda, K. Nakagawa, and H. Fujiwara, “A spatial light modulator using a methyl-red doped polyvinyl alcohol film,” Nonlinear Opt. 7, 295–301 (1994).

C. Egami, K. Nakagawa, and H. Fujiwara, “Efficient optical phase conjugation in methyl-orange-doped polyvinyl alcohol film,” Jpn. J. Appl. Phys. 31, 2937–2940 (1992).
[CrossRef]

C. Egami, K. Nakagawa, and H. Fujiwara, “Phase conjugation in methyl-orange-doped PVA films by photoinduced anisotropy,” Jpn. J. Appl. Phys. 29, 1544–1546 (1990).
[CrossRef]

Nakashima, M.

Nikolova, L.

O’Leary, S. V.

S. V. O’Leary, “Real-time image processing by degenerate four-wave mixing in polarization sensitive dye-impregnated polymer films,” Opt. Commun. 104, 245–250 (1994).
[CrossRef]

Oesterhelt, D.

Okamoto, N.

Okamoto, T.

Padias, A. B.

Peyghambarian, N.

Pham, V. P.

V. P. Pham, T. Galstyan, A. Granger, and R. A. Lessard, “Novel azo dye-doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. 36, 429–438 (1997).
[CrossRef]

Rao, D. V. G. L. N.

Ricard, D.

T. F. Heinz, C. K. Chen, D. Ricard, and V. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478–481 (1982).
[CrossRef]

Sandalphon,

Shen, V. R.

T. F. Heinz, C. K. Chen, D. Ricard, and V. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478–481 (1982).
[CrossRef]

Shimizu, N.

Stoyanova, K.

Sugihara, O.

Suzuki, Y.

Takeda, T.

T. Takeda, K. Nakagawa, and H. Fujiwara, “A spatial light modulator using a methyl-red doped polyvinyl alcohol film,” Nonlinear Opt. 7, 295–301 (1994).

Takei, H.

Tanaka, H.

Thoma, R.

Todorov, T.

Tomova, N.

Uemori, T.

Wagner, K. H.

Wenke, L.

B. Fleck and L. Wenke, “The intensity transfer function of a photoanisotropic wavelength-to-wavelength converter,” Opt. Commun. 137, 207–213 (1997).
[CrossRef]

Whale, E.

E. Mohajerani, E. Whale, and G. R. Mitchell, “Polarization sensitive optical phase conjugation in novel polymer films,” Opt. Commun. 92, 403–410 (1992).
[CrossRef]

Yacoubian, A.

Yamaguchi, I.

Appl. Opt. (10)

T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, “Polarization holography. 3. Some applications of polarization holographic recording,” Appl. Opt. 24, 785–788 (1985).
[CrossRef]

J. J. A. Couture, “Polarization holographic characterization of organic azo dyes/PVA films for real time applications,” Appl. Opt. 30, 2858–2866 (1991).
[CrossRef] [PubMed]

S. Calixto and R. A. Lessard, “Holographic recording and reconstruction of polarized light with dyed plastic,” Appl. Opt. 23, 4313–4318 (1984).
[CrossRef] [PubMed]

L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, “Polarization-preserving wavefront reversal by four-wave mixing in photoanisotropic materials,” Appl. Opt. 27, 1598–1602 (1988).
[CrossRef] [PubMed]

S. Mailhot, P. Galarneau, R. A. Lessard, and M. Denaries-Roberge, “Degenerate four-wave mixing in organic azo dyes chrysoidin and benzopurpurin 4B,” Appl. Opt. 27, 3418–3421 (1988).
[CrossRef] [PubMed]

A. Yacoubian and T. M. Aye, “Enhanced optical modulation using azo-dye polymers,” Appl. Opt. 32, 3073–3080 (1993).
[CrossRef] [PubMed]

J. D. Downie, “Nonlinear coherent optical image processing using logarithmic transmittance of bacteriorhodopsin films,” Appl. Opt. 34, 5210–5217 (1995).
[CrossRef] [PubMed]

T. Huang and K. H. Wagner, “Photoanisotropic incoherent-to-coherent optical conversion,” Appl. Opt. 32, 1888–1900 (1993).
[CrossRef] [PubMed]

H. Takei and N. Shimizu, “Spatial light modulation based on photoinduced change in the complex refractive index of bacteriorhodopsin,” Appl. Opt. 35, 1848–1854 (1996).
[CrossRef] [PubMed]

T. Okamoto, I. Yamaguchi, S. A. Boothroyd, and J. Chrostowski, “Novelty filter that uses a bacteriorhodopsin film,” Appl. Opt. 36, 508–511 (1997).
[CrossRef] [PubMed]

Appl. Phys. B (1)

G. Marowsky and A. Gierulski, “Interferometric enhancement of surface-generated second-harmonic radiation,” Appl. Phys. B 34, 69–72 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. QE-22, 1262–1267 (1986).
[CrossRef]

J. Mater. Chem. (1)

S. H. Barley, A. Gilbert, and G. R. Mitchell, “Photoinduced reversible refractive-index changes in tailored siloxane-based polymers,” J. Mater. Chem. 1, 481–482 (1991).
[CrossRef]

Jpn. J. Appl. Phys. (3)

C. Egami, K. Nakagawa, and H. Fujiwara, “Efficient optical phase conjugation in methyl-orange-doped polyvinyl alcohol film,” Jpn. J. Appl. Phys. 31, 2937–2940 (1992).
[CrossRef]

C. Egami, K. Nakagawa, and H. Fujiwara, “Phase conjugation in methyl-orange-doped PVA films by photoinduced anisotropy,” Jpn. J. Appl. Phys. 29, 1544–1546 (1990).
[CrossRef]

V. P. Pham, T. Galstyan, A. Granger, and R. A. Lessard, “Novel azo dye-doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. 36, 429–438 (1997).
[CrossRef]

Nature (1)

C. Jones and S. Day, “Shedding light on alignment,” Nature 351, 15 (1991).
[CrossRef]

Nonlinear Opt. (1)

T. Takeda, K. Nakagawa, and H. Fujiwara, “A spatial light modulator using a methyl-red doped polyvinyl alcohol film,” Nonlinear Opt. 7, 295–301 (1994).

Opt. Commun. (3)

B. Fleck and L. Wenke, “The intensity transfer function of a photoanisotropic wavelength-to-wavelength converter,” Opt. Commun. 137, 207–213 (1997).
[CrossRef]

S. V. O’Leary, “Real-time image processing by degenerate four-wave mixing in polarization sensitive dye-impregnated polymer films,” Opt. Commun. 104, 245–250 (1994).
[CrossRef]

E. Mohajerani, E. Whale, and G. R. Mitchell, “Polarization sensitive optical phase conjugation in novel polymer films,” Opt. Commun. 92, 403–410 (1992).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. Lett. (1)

T. F. Heinz, C. K. Chen, D. Ricard, and V. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478–481 (1982).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Chemical structures of polymer composites, showing self-polarization modulation and the optical threshold effect. NLO; nonlinear optical.

Fig. 2
Fig. 2

Absorbance spectra of the trans and cis isomers of DR1.

Fig. 3
Fig. 3

Variation of a d33 component with the ratios of plasticizer to polymer.

Fig. 4
Fig. 4

External electric-field dependence of the second-harmonic (SH) intensity for the sample with 70 wt. % dopants.

Fig. 5
Fig. 5

Evaluation of the polarization transmission at 632.8 nm when the film is exposed to the probe beam. α is the angle between the polarization of the probe beam and that of the measuring beam.

Fig. 6
Fig. 6

Dependence of probe-beam intensity on the transmitted power from the crossed-polarizer–analyzer.

Fig. 7
Fig. 7

Temporal profiles of transmitted probe-beam power recorded for various intensity ratios between the action beam and the probe beam when the action beam is switching on and off.

Fig. 8
Fig. 8

Optical setup using the 4f system for the directional spatial-filtering operation. The polarizer and the analyzer are orthogonal.

Fig. 9
Fig. 9

(a) An original image and (b) a high-pass-filtered image after optical threshold processing in the Fourier plane.

Tables (1)

Tables Icon

Table 1 Dependence of ECZ Dopant Weight on Order Parameter

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ=12 (3cos2 θp-1)=1-AnA0
σ=σ(A2 cos2 θ+B2 sin2 θ cos2 ϕ)+σ[A2 sin2 θ+B2(1-sin2 θ cos2 ϕ)],

Metrics