Y. Osugi, H. Mizukawa, and T. Minemoto, “Quantization and truncation conditions of Fourier power spectrum for good performance in a binary subtracted joint transform correlator,” Opt. Rev. 3, 161–170 (1996).

[CrossRef]

S. Vallmitjana, A. Carnicer, E. Martı́n-Badosa, and I. Juvells, “Nonlinear filtering in object and Fourier space in a joint transform optical correlator: comparison and experimental realization,” Appl. Opt. 34, 3942–3949 (1995).

[CrossRef]
[PubMed]

A. Carnicer, E. Martı́n-Badosa, I. Juvells, and S. Vallmitjana, “Spatial envelope-free nonlinear joint transform correlator,” Opt. Commun. 114, 336–343 (1995).

[CrossRef]

Y. Osugi, Q. Zhan, and T. Minemoto, “Hybrid binary subtracted joint transform correlator for a large number of reference patterns using a Bi12SiO20 (BSO) spatial light modulator and a laser scanner,” Opt. Rev. 1, 159–162 (1994).

[CrossRef]

C. Soutar, W. A. Gillespie, and C. M. Cartwright, “The effect of optical bias on grating formation dynamics in photorefractive BSO,” Opt. Commun. 90, 329–334 (1992).

[CrossRef]

K. Chalasinska-Macukow and C. Gorecki, “Optoelectronic implementation of a quasi-phase correlator,” Opt. Commun. 93, 11–18 (1992).

[CrossRef]

C. Kirsch, D. A. Gregory, M. W. Thie, and B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).

[CrossRef]

C. Soutar, Z. Q. Wang, C. M. Cartwright, and W. A. Gillespie, “Real-time optical intensity correlator using photorefractive BSO and liquid crystal television,” J. Mod. Opt. 39, 761–769 (1992).

[CrossRef]

D. Feng, H. Zhao, and S. Xia, “Amplitude modulated joint transform correlator for improving correlation discrimination,” Opt. Commun. 86, 260–264 (1991).

[CrossRef]

B. Javidi, J. Wang, and Q. Tang, “Multiple-object binary joint transform correlation using multiple level threshold crossing,” Appl. Opt. 30, 4234–4244 (1991).

[CrossRef]
[PubMed]

B. Javidi, J. Ruiz, and C. Ruiz, “Performance of the binary nonlinear joint transform correlators in the presence of the Fourier plane quantization,” Opt. Commun. 80, 275–284 (1991).

[CrossRef]

T. J. Hall, R. Jaura, L. M. Connors, and P. D. Foote, “The photorefractive effect. A review,” Prog. Quantum Electron. 10, 77–146 (1985).

[CrossRef]

H-K. Liu, J. A. Davis, and R. A. Lilly, “Optical-data-processing properties of a liquid-crystal television spatial light modulator,” Opt. Lett. 10, 635–637 (1985).

[CrossRef]
[PubMed]

S. Yu and X. J. Lu, “A real-time programmable joint transform correlator,” Opt. Commun. 52, 10–16 (1984).

[CrossRef]

L. Pichon and J. P. Huignard, “Dynamic joint-Fourier transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals,” Opt. Commun. 36, 277–280 (1981).

[CrossRef]

M. G. Moharam, T. K. Gaylord, R. Magusson, and L. Young, “Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).

[CrossRef]

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

A. Carnicer, E. Martı́n-Badosa, I. Juvells, and S. Vallmitjana, “Spatial envelope-free nonlinear joint transform correlator,” Opt. Commun. 114, 336–343 (1995).

[CrossRef]

S. Vallmitjana, A. Carnicer, E. Martı́n-Badosa, and I. Juvells, “Nonlinear filtering in object and Fourier space in a joint transform optical correlator: comparison and experimental realization,” Appl. Opt. 34, 3942–3949 (1995).

[CrossRef]
[PubMed]

C. Soutar, W. A. Gillespie, and C. M. Cartwright, “The effect of optical bias on grating formation dynamics in photorefractive BSO,” Opt. Commun. 90, 329–334 (1992).

[CrossRef]

C. Soutar, Z. Q. Wang, C. M. Cartwright, and W. A. Gillespie, “Real-time optical intensity correlator using photorefractive BSO and liquid crystal television,” J. Mod. Opt. 39, 761–769 (1992).

[CrossRef]

K. Chalasinska-Macukow and C. Gorecki, “Optoelectronic implementation of a quasi-phase correlator,” Opt. Commun. 93, 11–18 (1992).

[CrossRef]

T. J. Hall, R. Jaura, L. M. Connors, and P. D. Foote, “The photorefractive effect. A review,” Prog. Quantum Electron. 10, 77–146 (1985).

[CrossRef]

D. Feng, H. Zhao, and S. Xia, “Amplitude modulated joint transform correlator for improving correlation discrimination,” Opt. Commun. 86, 260–264 (1991).

[CrossRef]

T. J. Hall, R. Jaura, L. M. Connors, and P. D. Foote, “The photorefractive effect. A review,” Prog. Quantum Electron. 10, 77–146 (1985).

[CrossRef]

M. G. Moharam, T. K. Gaylord, R. Magusson, and L. Young, “Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).

[CrossRef]

C. Soutar, W. A. Gillespie, and C. M. Cartwright, “The effect of optical bias on grating formation dynamics in photorefractive BSO,” Opt. Commun. 90, 329–334 (1992).

[CrossRef]

C. Soutar, Z. Q. Wang, C. M. Cartwright, and W. A. Gillespie, “Real-time optical intensity correlator using photorefractive BSO and liquid crystal television,” J. Mod. Opt. 39, 761–769 (1992).

[CrossRef]

K. Chalasinska-Macukow and C. Gorecki, “Optoelectronic implementation of a quasi-phase correlator,” Opt. Commun. 93, 11–18 (1992).

[CrossRef]

F. Cheng, F. T. S. Yu, and D. A. Gregory, “Multitarget detection using spatial synthesis joint transform correlator,” Appl. Opt. 32, 6521–6526 (1993).

[CrossRef]
[PubMed]

C. Kirsch, D. A. Gregory, M. W. Thie, and B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).

[CrossRef]

F. T. S. Yu, S. Jutamulia, T. W. Lin, and D. A. Gregory, “Adaptive real-time pattern recognition using a liquid crystal TV based joint transform correlator,” Appl. Opt. 26, 1370–1372 (1987).

[CrossRef]
[PubMed]

H. Gunter and P. H. Higuard, Photorefractive Materials and Their Applications II, Vol. 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1989).

T. J. Hall, R. Jaura, L. M. Connors, and P. D. Foote, “The photorefractive effect. A review,” Prog. Quantum Electron. 10, 77–146 (1985).

[CrossRef]

H. Gunter and P. H. Higuard, Photorefractive Materials and Their Applications II, Vol. 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1989).

L. Pichon and J. P. Huignard, “Dynamic joint-Fourier transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals,” Opt. Commun. 36, 277–280 (1981).

[CrossRef]

T. J. Hall, R. Jaura, L. M. Connors, and P. D. Foote, “The photorefractive effect. A review,” Prog. Quantum Electron. 10, 77–146 (1985).

[CrossRef]

B. Javidi, J. Ruiz, and C. Ruiz, “Performance of the binary nonlinear joint transform correlators in the presence of the Fourier plane quantization,” Opt. Commun. 80, 275–284 (1991).

[CrossRef]

B. Javidi, J. Wang, and Q. Tang, “Multiple-object binary joint transform correlation using multiple level threshold crossing,” Appl. Opt. 30, 4234–4244 (1991).

[CrossRef]
[PubMed]

B. Javidi, “Nonlinear correlation joint transform correlation,” Appl. Opt. 28, 2358–2367 (1989).

[CrossRef]
[PubMed]

C. Kirsch, D. A. Gregory, M. W. Thie, and B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).

[CrossRef]

A. Carnicer, E. Martı́n-Badosa, I. Juvells, and S. Vallmitjana, “Spatial envelope-free nonlinear joint transform correlator,” Opt. Commun. 114, 336–343 (1995).

[CrossRef]

S. Vallmitjana, A. Carnicer, E. Martı́n-Badosa, and I. Juvells, “Nonlinear filtering in object and Fourier space in a joint transform optical correlator: comparison and experimental realization,” Appl. Opt. 34, 3942–3949 (1995).

[CrossRef]
[PubMed]

C. Kirsch, D. A. Gregory, M. W. Thie, and B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).

[CrossRef]

C. Soutar, S. E. Monroe, and J. Knopp, “Complex characterisation of the Epson liquid crystal television,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 269–277 (1993).

[CrossRef]

S. Yu and X. J. Lu, “A real-time programmable joint transform correlator,” Opt. Commun. 52, 10–16 (1984).

[CrossRef]

M. G. Moharam, T. K. Gaylord, R. Magusson, and L. Young, “Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).

[CrossRef]

S. Vallmitjana, A. Carnicer, E. Martı́n-Badosa, and I. Juvells, “Nonlinear filtering in object and Fourier space in a joint transform optical correlator: comparison and experimental realization,” Appl. Opt. 34, 3942–3949 (1995).

[CrossRef]
[PubMed]

A. Carnicer, E. Martı́n-Badosa, I. Juvells, and S. Vallmitjana, “Spatial envelope-free nonlinear joint transform correlator,” Opt. Commun. 114, 336–343 (1995).

[CrossRef]

Y. Osugi, H. Mizukawa, and T. Minemoto, “Quantization and truncation conditions of Fourier power spectrum for good performance in a binary subtracted joint transform correlator,” Opt. Rev. 3, 161–170 (1996).

[CrossRef]

Y. Osugi, Q. Zhan, and T. Minemoto, “Hybrid binary subtracted joint transform correlator for a large number of reference patterns using a Bi12SiO20 (BSO) spatial light modulator and a laser scanner,” Opt. Rev. 1, 159–162 (1994).

[CrossRef]

Q. Zhan and T. Minemoto, “Successful pattern matching with a large number of reference patterns using a joint Fourier-transform correlator,” Jpn. J. Appl. Phys. 32, 3471–3476 (1993).

[CrossRef]

Y. Osugi, H. Mizukawa, and T. Minemoto, “Quantization and truncation conditions of Fourier power spectrum for good performance in a binary subtracted joint transform correlator,” Opt. Rev. 3, 161–170 (1996).

[CrossRef]

M. G. Moharam, T. K. Gaylord, R. Magusson, and L. Young, “Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).

[CrossRef]

C. Soutar, S. E. Monroe, and J. Knopp, “Complex characterisation of the Epson liquid crystal television,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 269–277 (1993).

[CrossRef]

H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms, Vol. 2 of Information Sciences (Springer-Verlag, Berlin, 1982).

Y. Osugi, H. Mizukawa, and T. Minemoto, “Quantization and truncation conditions of Fourier power spectrum for good performance in a binary subtracted joint transform correlator,” Opt. Rev. 3, 161–170 (1996).

[CrossRef]

Y. Osugi, Q. Zhan, and T. Minemoto, “Hybrid binary subtracted joint transform correlator for a large number of reference patterns using a Bi12SiO20 (BSO) spatial light modulator and a laser scanner,” Opt. Rev. 1, 159–162 (1994).

[CrossRef]

L. Pichon and J. P. Huignard, “Dynamic joint-Fourier transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals,” Opt. Commun. 36, 277–280 (1981).

[CrossRef]

B. Javidi, J. Ruiz, and C. Ruiz, “Performance of the binary nonlinear joint transform correlators in the presence of the Fourier plane quantization,” Opt. Commun. 80, 275–284 (1991).

[CrossRef]

B. Javidi, J. Ruiz, and C. Ruiz, “Performance of the binary nonlinear joint transform correlators in the presence of the Fourier plane quantization,” Opt. Commun. 80, 275–284 (1991).

[CrossRef]

C. Soutar, W. A. Gillespie, and C. M. Cartwright, “The effect of optical bias on grating formation dynamics in photorefractive BSO,” Opt. Commun. 90, 329–334 (1992).

[CrossRef]

C. Soutar, Z. Q. Wang, C. M. Cartwright, and W. A. Gillespie, “Real-time optical intensity correlator using photorefractive BSO and liquid crystal television,” J. Mod. Opt. 39, 761–769 (1992).

[CrossRef]

C. Soutar, S. E. Monroe, and J. Knopp, “Complex characterisation of the Epson liquid crystal television,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 269–277 (1993).

[CrossRef]

C. Kirsch, D. A. Gregory, M. W. Thie, and B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).

[CrossRef]

S. Vallmitjana, A. Carnicer, E. Martı́n-Badosa, and I. Juvells, “Nonlinear filtering in object and Fourier space in a joint transform optical correlator: comparison and experimental realization,” Appl. Opt. 34, 3942–3949 (1995).

[CrossRef]
[PubMed]

A. Carnicer, E. Martı́n-Badosa, I. Juvells, and S. Vallmitjana, “Spatial envelope-free nonlinear joint transform correlator,” Opt. Commun. 114, 336–343 (1995).

[CrossRef]

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

C. Soutar, Z. Q. Wang, C. M. Cartwright, and W. A. Gillespie, “Real-time optical intensity correlator using photorefractive BSO and liquid crystal television,” J. Mod. Opt. 39, 761–769 (1992).

[CrossRef]

D. Feng, H. Zhao, and S. Xia, “Amplitude modulated joint transform correlator for improving correlation discrimination,” Opt. Commun. 86, 260–264 (1991).

[CrossRef]

M. G. Moharam, T. K. Gaylord, R. Magusson, and L. Young, “Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).

[CrossRef]

F. Cheng, F. T. S. Yu, and D. A. Gregory, “Multitarget detection using spatial synthesis joint transform correlator,” Appl. Opt. 32, 6521–6526 (1993).

[CrossRef]
[PubMed]

F. T. S. Yu, S. Jutamulia, T. W. Lin, and D. A. Gregory, “Adaptive real-time pattern recognition using a liquid crystal TV based joint transform correlator,” Appl. Opt. 26, 1370–1372 (1987).

[CrossRef]
[PubMed]

S. Yu and X. J. Lu, “A real-time programmable joint transform correlator,” Opt. Commun. 52, 10–16 (1984).

[CrossRef]

Y. Osugi, Q. Zhan, and T. Minemoto, “Hybrid binary subtracted joint transform correlator for a large number of reference patterns using a Bi12SiO20 (BSO) spatial light modulator and a laser scanner,” Opt. Rev. 1, 159–162 (1994).

[CrossRef]

Q. Zhan and T. Minemoto, “Successful pattern matching with a large number of reference patterns using a joint Fourier-transform correlator,” Jpn. J. Appl. Phys. 32, 3471–3476 (1993).

[CrossRef]

D. Feng, H. Zhao, and S. Xia, “Amplitude modulated joint transform correlator for improving correlation discrimination,” Opt. Commun. 86, 260–264 (1991).

[CrossRef]

C. S. Weaver and J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).

[CrossRef]
[PubMed]

B. Javidi, “Nonlinear correlation joint transform correlation,” Appl. Opt. 28, 2358–2367 (1989).

[CrossRef]
[PubMed]

S. Vallmitjana, A. Carnicer, E. Martı́n-Badosa, and I. Juvells, “Nonlinear filtering in object and Fourier space in a joint transform optical correlator: comparison and experimental realization,” Appl. Opt. 34, 3942–3949 (1995).

[CrossRef]
[PubMed]

F. T. S. Yu, S. Jutamulia, T. W. Lin, and D. A. Gregory, “Adaptive real-time pattern recognition using a liquid crystal TV based joint transform correlator,” Appl. Opt. 26, 1370–1372 (1987).

[CrossRef]
[PubMed]

B. Javidi, J. Wang, and Q. Tang, “Multiple-object binary joint transform correlation using multiple level threshold crossing,” Appl. Opt. 30, 4234–4244 (1991).

[CrossRef]
[PubMed]

F. Cheng, F. T. S. Yu, and D. A. Gregory, “Multitarget detection using spatial synthesis joint transform correlator,” Appl. Opt. 32, 6521–6526 (1993).

[CrossRef]
[PubMed]

W. H. Lee, “Sampled Fourier transform hologram generated by computer,” Appl. Opt. 9, 639–643 (1970).

[CrossRef]
[PubMed]

B. V. K. Vijaya Kumar and L. Hassebrook, “Performance measures for correlation filters,” Appl. Opt. 29, 2997–3006 (1990).

[CrossRef]

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

M. G. Moharam, T. K. Gaylord, R. Magusson, and L. Young, “Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).

[CrossRef]

C. Soutar, Z. Q. Wang, C. M. Cartwright, and W. A. Gillespie, “Real-time optical intensity correlator using photorefractive BSO and liquid crystal television,” J. Mod. Opt. 39, 761–769 (1992).

[CrossRef]

Q. Zhan and T. Minemoto, “Successful pattern matching with a large number of reference patterns using a joint Fourier-transform correlator,” Jpn. J. Appl. Phys. 32, 3471–3476 (1993).

[CrossRef]

K. Chalasinska-Macukow and C. Gorecki, “Optoelectronic implementation of a quasi-phase correlator,” Opt. Commun. 93, 11–18 (1992).

[CrossRef]

A. Carnicer, E. Martı́n-Badosa, I. Juvells, and S. Vallmitjana, “Spatial envelope-free nonlinear joint transform correlator,” Opt. Commun. 114, 336–343 (1995).

[CrossRef]

D. Feng, H. Zhao, and S. Xia, “Amplitude modulated joint transform correlator for improving correlation discrimination,” Opt. Commun. 86, 260–264 (1991).

[CrossRef]

L. Pichon and J. P. Huignard, “Dynamic joint-Fourier transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals,” Opt. Commun. 36, 277–280 (1981).

[CrossRef]

S. Yu and X. J. Lu, “A real-time programmable joint transform correlator,” Opt. Commun. 52, 10–16 (1984).

[CrossRef]

B. Javidi, J. Ruiz, and C. Ruiz, “Performance of the binary nonlinear joint transform correlators in the presence of the Fourier plane quantization,” Opt. Commun. 80, 275–284 (1991).

[CrossRef]

C. Soutar, W. A. Gillespie, and C. M. Cartwright, “The effect of optical bias on grating formation dynamics in photorefractive BSO,” Opt. Commun. 90, 329–334 (1992).

[CrossRef]

C. Kirsch, D. A. Gregory, M. W. Thie, and B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).

[CrossRef]

Y. Osugi, Q. Zhan, and T. Minemoto, “Hybrid binary subtracted joint transform correlator for a large number of reference patterns using a Bi12SiO20 (BSO) spatial light modulator and a laser scanner,” Opt. Rev. 1, 159–162 (1994).

[CrossRef]

Y. Osugi, H. Mizukawa, and T. Minemoto, “Quantization and truncation conditions of Fourier power spectrum for good performance in a binary subtracted joint transform correlator,” Opt. Rev. 3, 161–170 (1996).

[CrossRef]

T. J. Hall, R. Jaura, L. M. Connors, and P. D. Foote, “The photorefractive effect. A review,” Prog. Quantum Electron. 10, 77–146 (1985).

[CrossRef]

H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms, Vol. 2 of Information Sciences (Springer-Verlag, Berlin, 1982).

The number of flops per second can be obtained by means of a performance test. Specialized algorithms to deal with Fourier transforms are also available. The C code to test the marks of our computed was obtained from an anonymous ftp at ftp://ftp.nosc.mil/pub/aburto/tfftdp.c. Further details of compiler requirements for carrying out the test can be found at http://www.netlib.org/performance/html/PDSreports.html .

H. Gunter and P. H. Higuard, Photorefractive Materials and Their Applications II, Vol. 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1989).

C. Soutar, S. E. Monroe, and J. Knopp, “Complex characterisation of the Epson liquid crystal television,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 269–277 (1993).

[CrossRef]