Abstract

The spectra of the 2s2p lithium transitions were studied in an atomic-lithium vapor–argon-gas mixture by a Doppler-free saturation amplitude modulation spectroscopy technique that employs a tunable diode laser. Lamb-dip and crossover signals were highly resolved. The experimental Doppler-free spectra were used in conjunction with a density matrix method to yield parameters of spectroscopic interest. These parameters include line broadening and relaxation rates that are due to collisions between isotopic species and argon atoms. In addition, Doppler-limited spectra were used to determine density, concentration, and temperature of the lithium isotopes.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, and I. E. Olivares, “In situ density measurements for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
    [Crossref]
  2. J. Brust, D. Veza, and K. Niemax, “Collisional excitationtransfer between lithium isotopes,” Z. Phys. D 32, 305–309 (1995).
    [Crossref]
  3. M. G. Boshier, D. Berkeland, E. A. Hinds, and V. Sandoghar, “External-cavity frequency-stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 85, 355–359 (1991).
    [Crossref]
  4. M. Weidemuller, C. Gabbanini, J. Hare, M. Gross, and S. Haroche, “A beam of laser-cooled lithium Rydberg atoms for precision microwave spectroscopy,” Opt. Commun. 101, 342–346 (1993).
    [Crossref]
  5. S. N. Atutov, E. Mariotti, M. Meucci, P. Bicchi, C. Marielli, and L. Moi, “A 670 nm external-cavity single mode diode laser continuously tunable over 18 GHz range,” Opt. Commun. 107, 83–87 (1994).
    [Crossref]
  6. J. Chen, J. G. Story, J. J. Tollet, and R. G. Hulet, “Adiabatic cooling of atoms by an intense standing wave,” Phys. Rev. Lett. 69, 1344–1346 (1992).
    [Crossref] [PubMed]
  7. C. J. Sansonetti, B. Richou, R. Engelman, and L. J. Radziemski, “Measurements of the resonance lines of 6Li and 7Li by Doppler-free frequency modulation spectroscopy,” Phys. Rev. A 52, 2682–2688 (1995).
    [Crossref] [PubMed]
  8. G. Shimkaveg, W. W. Quivers, R. R. Dasari, and M. S. Feld, “Direct measurement of velocity-changing collision cross section by laser optical pumping,” Phys. Rev. A 48, 1409–1418 (1993).
    [Crossref] [PubMed]
  9. C. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
    [Crossref]
  10. J. Franzke, A. Schnell, and K. Niemax, “Spectroscopic properties of commercial laser diodes,” Spectrochim. Acta Rev. 15, 379–95 (1993).
  11. P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, New York, 1995), pp. 349–442.
  12. F. J. Duarte, “Dispersive external cavity semiconductor lasers,” in Tunable Laser Applications, F. J. Duarte, ed. (Dekker, New York, 1995), pp. 153–178.
  13. W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
    [Crossref]
  14. R. Loudon, “Quantum mechanics of the atom-radiation interaction,” in The Quantum Theory of Light, 2nd ed., R. Loudon, ed. (Clarendon, Oxford, 1981), pp. 39–78.
  15. R. D. Cowan, ed., The Theory of Atomic Structure Spectra (U. California Press, Berkeley, Calif., 1981).
  16. H. J. Andra, “Precision experiments using fast beam laser interaction,” Nucl. Instrum. Methods 202, 123–137 (1982).
    [Crossref]
  17. E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
    [Crossref]
  18. J. R. Ackerhalt and B. W. Shore, “Rate equations versus Bloch equations in multiphoton ionization,” Phys. Rev. A 16, 277–282 (1977).
    [Crossref]
  19. M. G. Payne, L. Deng, and N. Thonnard, “Applications of resonance ionization mass spectrometry,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
    [Crossref]
  20. G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
    [Crossref]
  21. P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnik, “Saturation spectroscopy with optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
    [Crossref]
  22. W. Demtröder, Laser Spectroscopy Basic Concepts and Instrumentation (Springer-Verlag, Berlin, 1993).
  23. K. E. Gibble and A. Gallagher, “Measurements of velocity-changing collision kernels,” Phys. Rev. A 43, 1366–1380 (1991).
    [Crossref] [PubMed]
  24. R. M. Herman, “Noble-gas-induced rubidium spin disorientation,” Phys. Rev. A 136, 1576–1582 (1964).
    [Crossref]
  25. T. Holstein, “Imprisonment of resonance radiation in gases,” Phys. Rev. 72, 1212–1233 (1947).
    [Crossref]
  26. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–435 (1963).
    [Crossref]
  27. C. R. Vidal, “Spectroscopic observations of subsonic and sonic vapor inside an open-ended heat pipe,” J. Appl. Phys. 44, 2225–2232 (1973).
    [Crossref]
  28. C. R. Vidal and J. Cooper, “Heat-pipe oven: a new, well-defined metal vapor device for spectroscopic measurements,” J. Appl. Phys. 40, 3370–3374 (1969).
    [Crossref]
  29. D. R. Lide, ed., Handbook of Chemistry and Physics, 71st ed. (CRC, Boca Raton, Fla., 1991), pp. 5–70.

1998 (1)

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, and I. E. Olivares, “In situ density measurements for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[Crossref]

1995 (2)

J. Brust, D. Veza, and K. Niemax, “Collisional excitationtransfer between lithium isotopes,” Z. Phys. D 32, 305–309 (1995).
[Crossref]

C. J. Sansonetti, B. Richou, R. Engelman, and L. J. Radziemski, “Measurements of the resonance lines of 6Li and 7Li by Doppler-free frequency modulation spectroscopy,” Phys. Rev. A 52, 2682–2688 (1995).
[Crossref] [PubMed]

1994 (2)

S. N. Atutov, E. Mariotti, M. Meucci, P. Bicchi, C. Marielli, and L. Moi, “A 670 nm external-cavity single mode diode laser continuously tunable over 18 GHz range,” Opt. Commun. 107, 83–87 (1994).
[Crossref]

M. G. Payne, L. Deng, and N. Thonnard, “Applications of resonance ionization mass spectrometry,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
[Crossref]

1993 (3)

M. Weidemuller, C. Gabbanini, J. Hare, M. Gross, and S. Haroche, “A beam of laser-cooled lithium Rydberg atoms for precision microwave spectroscopy,” Opt. Commun. 101, 342–346 (1993).
[Crossref]

G. Shimkaveg, W. W. Quivers, R. R. Dasari, and M. S. Feld, “Direct measurement of velocity-changing collision cross section by laser optical pumping,” Phys. Rev. A 48, 1409–1418 (1993).
[Crossref] [PubMed]

J. Franzke, A. Schnell, and K. Niemax, “Spectroscopic properties of commercial laser diodes,” Spectrochim. Acta Rev. 15, 379–95 (1993).

1992 (1)

J. Chen, J. G. Story, J. J. Tollet, and R. G. Hulet, “Adiabatic cooling of atoms by an intense standing wave,” Phys. Rev. Lett. 69, 1344–1346 (1992).
[Crossref] [PubMed]

1991 (3)

M. G. Boshier, D. Berkeland, E. A. Hinds, and V. Sandoghar, “External-cavity frequency-stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 85, 355–359 (1991).
[Crossref]

C. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

K. E. Gibble and A. Gallagher, “Measurements of velocity-changing collision kernels,” Phys. Rev. A 43, 1366–1380 (1991).
[Crossref] [PubMed]

1982 (1)

H. J. Andra, “Precision experiments using fast beam laser interaction,” Nucl. Instrum. Methods 202, 123–137 (1982).
[Crossref]

1980 (1)

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnik, “Saturation spectroscopy with optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[Crossref]

1979 (1)

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[Crossref]

1977 (2)

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[Crossref]

J. R. Ackerhalt and B. W. Shore, “Rate equations versus Bloch equations in multiphoton ionization,” Phys. Rev. A 16, 277–282 (1977).
[Crossref]

1973 (1)

C. R. Vidal, “Spectroscopic observations of subsonic and sonic vapor inside an open-ended heat pipe,” J. Appl. Phys. 44, 2225–2232 (1973).
[Crossref]

1972 (1)

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[Crossref]

1969 (1)

C. R. Vidal and J. Cooper, “Heat-pipe oven: a new, well-defined metal vapor device for spectroscopic measurements,” J. Appl. Phys. 40, 3370–3374 (1969).
[Crossref]

1964 (1)

R. M. Herman, “Noble-gas-induced rubidium spin disorientation,” Phys. Rev. A 136, 1576–1582 (1964).
[Crossref]

1963 (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–435 (1963).
[Crossref]

1947 (1)

T. Holstein, “Imprisonment of resonance radiation in gases,” Phys. Rev. 72, 1212–1233 (1947).
[Crossref]

Ackerhalt, J. R.

J. R. Ackerhalt and B. W. Shore, “Rate equations versus Bloch equations in multiphoton ionization,” Phys. Rev. A 16, 277–282 (1977).
[Crossref]

Andra, H. J.

H. J. Andra, “Precision experiments using fast beam laser interaction,” Nucl. Instrum. Methods 202, 123–137 (1982).
[Crossref]

Arimondo, E.

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[Crossref]

Atutov, S. N.

S. N. Atutov, E. Mariotti, M. Meucci, P. Bicchi, C. Marielli, and L. Moi, “A 670 nm external-cavity single mode diode laser continuously tunable over 18 GHz range,” Opt. Commun. 107, 83–87 (1994).
[Crossref]

Berkeland, D.

M. G. Boshier, D. Berkeland, E. A. Hinds, and V. Sandoghar, “External-cavity frequency-stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 85, 355–359 (1991).
[Crossref]

Bicchi, P.

S. N. Atutov, E. Mariotti, M. Meucci, P. Bicchi, C. Marielli, and L. Moi, “A 670 nm external-cavity single mode diode laser continuously tunable over 18 GHz range,” Opt. Commun. 107, 83–87 (1994).
[Crossref]

Boshier, M. G.

M. G. Boshier, D. Berkeland, E. A. Hinds, and V. Sandoghar, “External-cavity frequency-stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 85, 355–359 (1991).
[Crossref]

Brust, J.

J. Brust, D. Veza, and K. Niemax, “Collisional excitationtransfer between lithium isotopes,” Z. Phys. D 32, 305–309 (1995).
[Crossref]

Burns, M. M.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnik, “Saturation spectroscopy with optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[Crossref]

Chen, J.

J. Chen, J. G. Story, J. J. Tollet, and R. G. Hulet, “Adiabatic cooling of atoms by an intense standing wave,” Phys. Rev. Lett. 69, 1344–1346 (1992).
[Crossref] [PubMed]

Cooper, J.

C. R. Vidal and J. Cooper, “Heat-pipe oven: a new, well-defined metal vapor device for spectroscopic measurements,” J. Appl. Phys. 40, 3370–3374 (1969).
[Crossref]

Dasari, R. R.

G. Shimkaveg, W. W. Quivers, R. R. Dasari, and M. S. Feld, “Direct measurement of velocity-changing collision cross section by laser optical pumping,” Phys. Rev. A 48, 1409–1418 (1993).
[Crossref] [PubMed]

Demtröder, W.

W. Demtröder, Laser Spectroscopy Basic Concepts and Instrumentation (Springer-Verlag, Berlin, 1993).

Deng, L.

M. G. Payne, L. Deng, and N. Thonnard, “Applications of resonance ionization mass spectrometry,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
[Crossref]

Dinklage, A.

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, and I. E. Olivares, “In situ density measurements for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[Crossref]

Duarte, F. J.

F. J. Duarte, “Dispersive external cavity semiconductor lasers,” in Tunable Laser Applications, F. J. Duarte, ed. (Dekker, New York, 1995), pp. 153–178.

Engelman, R.

C. J. Sansonetti, B. Richou, R. Engelman, and L. J. Radziemski, “Measurements of the resonance lines of 6Li and 7Li by Doppler-free frequency modulation spectroscopy,” Phys. Rev. A 52, 2682–2688 (1995).
[Crossref] [PubMed]

Feld, M. S.

G. Shimkaveg, W. W. Quivers, R. R. Dasari, and M. S. Feld, “Direct measurement of velocity-changing collision cross section by laser optical pumping,” Phys. Rev. A 48, 1409–1418 (1993).
[Crossref] [PubMed]

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnik, “Saturation spectroscopy with optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[Crossref]

Franzke, J.

J. Franzke, A. Schnell, and K. Niemax, “Spectroscopic properties of commercial laser diodes,” Spectrochim. Acta Rev. 15, 379–95 (1993).

Gabbanini, C.

M. Weidemuller, C. Gabbanini, J. Hare, M. Gross, and S. Haroche, “A beam of laser-cooled lithium Rydberg atoms for precision microwave spectroscopy,” Opt. Commun. 101, 342–346 (1993).
[Crossref]

Gallagher, A.

K. E. Gibble and A. Gallagher, “Measurements of velocity-changing collision kernels,” Phys. Rev. A 43, 1366–1380 (1991).
[Crossref] [PubMed]

Gibble, K. E.

K. E. Gibble and A. Gallagher, “Measurements of velocity-changing collision kernels,” Phys. Rev. A 43, 1366–1380 (1991).
[Crossref] [PubMed]

Gross, M.

M. Weidemuller, C. Gabbanini, J. Hare, M. Gross, and S. Haroche, “A beam of laser-cooled lithium Rydberg atoms for precision microwave spectroscopy,” Opt. Commun. 101, 342–346 (1993).
[Crossref]

Happer, W.

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[Crossref]

Hare, J.

M. Weidemuller, C. Gabbanini, J. Hare, M. Gross, and S. Haroche, “A beam of laser-cooled lithium Rydberg atoms for precision microwave spectroscopy,” Opt. Commun. 101, 342–346 (1993).
[Crossref]

Haroche, S.

M. Weidemuller, C. Gabbanini, J. Hare, M. Gross, and S. Haroche, “A beam of laser-cooled lithium Rydberg atoms for precision microwave spectroscopy,” Opt. Commun. 101, 342–346 (1993).
[Crossref]

Herman, R. M.

R. M. Herman, “Noble-gas-induced rubidium spin disorientation,” Phys. Rev. A 136, 1576–1582 (1964).
[Crossref]

Hinds, E. A.

M. G. Boshier, D. Berkeland, E. A. Hinds, and V. Sandoghar, “External-cavity frequency-stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 85, 355–359 (1991).
[Crossref]

Hinshelwood, D. D.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnik, “Saturation spectroscopy with optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[Crossref]

Hollberg, L.

C. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

Holstein, T.

T. Holstein, “Imprisonment of resonance radiation in gases,” Phys. Rev. 72, 1212–1233 (1947).
[Crossref]

Hulet, R. G.

J. Chen, J. G. Story, J. J. Tollet, and R. G. Hulet, “Adiabatic cooling of atoms by an intense standing wave,” Phys. Rev. Lett. 69, 1344–1346 (1992).
[Crossref] [PubMed]

Hurst, G. S.

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[Crossref]

Inguscio, M.

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[Crossref]

Kramer, S. D.

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[Crossref]

Kunze, H. J.

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, and I. E. Olivares, “In situ density measurements for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[Crossref]

Lokajczyk, T.

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, and I. E. Olivares, “In situ density measurements for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[Crossref]

Loudon, R.

R. Loudon, “Quantum mechanics of the atom-radiation interaction,” in The Quantum Theory of Light, 2nd ed., R. Loudon, ed. (Clarendon, Oxford, 1981), pp. 39–78.

Marielli, C.

S. N. Atutov, E. Mariotti, M. Meucci, P. Bicchi, C. Marielli, and L. Moi, “A 670 nm external-cavity single mode diode laser continuously tunable over 18 GHz range,” Opt. Commun. 107, 83–87 (1994).
[Crossref]

Mariotti, E.

S. N. Atutov, E. Mariotti, M. Meucci, P. Bicchi, C. Marielli, and L. Moi, “A 670 nm external-cavity single mode diode laser continuously tunable over 18 GHz range,” Opt. Commun. 107, 83–87 (1994).
[Crossref]

Marquardt, D. W.

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–435 (1963).
[Crossref]

Meucci, M.

S. N. Atutov, E. Mariotti, M. Meucci, P. Bicchi, C. Marielli, and L. Moi, “A 670 nm external-cavity single mode diode laser continuously tunable over 18 GHz range,” Opt. Commun. 107, 83–87 (1994).
[Crossref]

Moi, L.

S. N. Atutov, E. Mariotti, M. Meucci, P. Bicchi, C. Marielli, and L. Moi, “A 670 nm external-cavity single mode diode laser continuously tunable over 18 GHz range,” Opt. Commun. 107, 83–87 (1994).
[Crossref]

Murnik, D. E.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnik, “Saturation spectroscopy with optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[Crossref]

Niemax, K.

J. Brust, D. Veza, and K. Niemax, “Collisional excitationtransfer between lithium isotopes,” Z. Phys. D 32, 305–309 (1995).
[Crossref]

J. Franzke, A. Schnell, and K. Niemax, “Spectroscopic properties of commercial laser diodes,” Spectrochim. Acta Rev. 15, 379–95 (1993).

Olivares, I. E.

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, and I. E. Olivares, “In situ density measurements for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[Crossref]

Pappas, P. G.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnik, “Saturation spectroscopy with optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[Crossref]

Payne, M. G.

M. G. Payne, L. Deng, and N. Thonnard, “Applications of resonance ionization mass spectrometry,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
[Crossref]

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[Crossref]

Quivers, W. W.

G. Shimkaveg, W. W. Quivers, R. R. Dasari, and M. S. Feld, “Direct measurement of velocity-changing collision cross section by laser optical pumping,” Phys. Rev. A 48, 1409–1418 (1993).
[Crossref] [PubMed]

Radziemski, L. J.

C. J. Sansonetti, B. Richou, R. Engelman, and L. J. Radziemski, “Measurements of the resonance lines of 6Li and 7Li by Doppler-free frequency modulation spectroscopy,” Phys. Rev. A 52, 2682–2688 (1995).
[Crossref] [PubMed]

Richou, B.

C. J. Sansonetti, B. Richou, R. Engelman, and L. J. Radziemski, “Measurements of the resonance lines of 6Li and 7Li by Doppler-free frequency modulation spectroscopy,” Phys. Rev. A 52, 2682–2688 (1995).
[Crossref] [PubMed]

Sandoghar, V.

M. G. Boshier, D. Berkeland, E. A. Hinds, and V. Sandoghar, “External-cavity frequency-stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 85, 355–359 (1991).
[Crossref]

Sansonetti, C. J.

C. J. Sansonetti, B. Richou, R. Engelman, and L. J. Radziemski, “Measurements of the resonance lines of 6Li and 7Li by Doppler-free frequency modulation spectroscopy,” Phys. Rev. A 52, 2682–2688 (1995).
[Crossref] [PubMed]

Schnell, A.

J. Franzke, A. Schnell, and K. Niemax, “Spectroscopic properties of commercial laser diodes,” Spectrochim. Acta Rev. 15, 379–95 (1993).

Schweer, B.

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, and I. E. Olivares, “In situ density measurements for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[Crossref]

Shimkaveg, G.

G. Shimkaveg, W. W. Quivers, R. R. Dasari, and M. S. Feld, “Direct measurement of velocity-changing collision cross section by laser optical pumping,” Phys. Rev. A 48, 1409–1418 (1993).
[Crossref] [PubMed]

Shore, B. W.

J. R. Ackerhalt and B. W. Shore, “Rate equations versus Bloch equations in multiphoton ionization,” Phys. Rev. A 16, 277–282 (1977).
[Crossref]

Story, J. G.

J. Chen, J. G. Story, J. J. Tollet, and R. G. Hulet, “Adiabatic cooling of atoms by an intense standing wave,” Phys. Rev. Lett. 69, 1344–1346 (1992).
[Crossref] [PubMed]

Thonnard, N.

M. G. Payne, L. Deng, and N. Thonnard, “Applications of resonance ionization mass spectrometry,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
[Crossref]

Tollet, J. J.

J. Chen, J. G. Story, J. J. Tollet, and R. G. Hulet, “Adiabatic cooling of atoms by an intense standing wave,” Phys. Rev. Lett. 69, 1344–1346 (1992).
[Crossref] [PubMed]

Veza, D.

J. Brust, D. Veza, and K. Niemax, “Collisional excitationtransfer between lithium isotopes,” Z. Phys. D 32, 305–309 (1995).
[Crossref]

Vidal, C. R.

C. R. Vidal, “Spectroscopic observations of subsonic and sonic vapor inside an open-ended heat pipe,” J. Appl. Phys. 44, 2225–2232 (1973).
[Crossref]

C. R. Vidal and J. Cooper, “Heat-pipe oven: a new, well-defined metal vapor device for spectroscopic measurements,” J. Appl. Phys. 40, 3370–3374 (1969).
[Crossref]

Violino, P.

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[Crossref]

Weidemuller, M.

M. Weidemuller, C. Gabbanini, J. Hare, M. Gross, and S. Haroche, “A beam of laser-cooled lithium Rydberg atoms for precision microwave spectroscopy,” Opt. Commun. 101, 342–346 (1993).
[Crossref]

Wieman, C.

C. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

Young, J. P.

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[Crossref]

Zorabedian, P.

P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, New York, 1995), pp. 349–442.

J. Appl. Phys. (2)

C. R. Vidal, “Spectroscopic observations of subsonic and sonic vapor inside an open-ended heat pipe,” J. Appl. Phys. 44, 2225–2232 (1973).
[Crossref]

C. R. Vidal and J. Cooper, “Heat-pipe oven: a new, well-defined metal vapor device for spectroscopic measurements,” J. Appl. Phys. 40, 3370–3374 (1969).
[Crossref]

J. Soc. Ind. Appl. Math. (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–435 (1963).
[Crossref]

Nucl. Instrum. Methods (1)

H. J. Andra, “Precision experiments using fast beam laser interaction,” Nucl. Instrum. Methods 202, 123–137 (1982).
[Crossref]

Opt. Commun. (3)

M. G. Boshier, D. Berkeland, E. A. Hinds, and V. Sandoghar, “External-cavity frequency-stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 85, 355–359 (1991).
[Crossref]

M. Weidemuller, C. Gabbanini, J. Hare, M. Gross, and S. Haroche, “A beam of laser-cooled lithium Rydberg atoms for precision microwave spectroscopy,” Opt. Commun. 101, 342–346 (1993).
[Crossref]

S. N. Atutov, E. Mariotti, M. Meucci, P. Bicchi, C. Marielli, and L. Moi, “A 670 nm external-cavity single mode diode laser continuously tunable over 18 GHz range,” Opt. Commun. 107, 83–87 (1994).
[Crossref]

Phys. Rev. (1)

T. Holstein, “Imprisonment of resonance radiation in gases,” Phys. Rev. 72, 1212–1233 (1947).
[Crossref]

Phys. Rev. A (6)

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnik, “Saturation spectroscopy with optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[Crossref]

K. E. Gibble and A. Gallagher, “Measurements of velocity-changing collision kernels,” Phys. Rev. A 43, 1366–1380 (1991).
[Crossref] [PubMed]

R. M. Herman, “Noble-gas-induced rubidium spin disorientation,” Phys. Rev. A 136, 1576–1582 (1964).
[Crossref]

C. J. Sansonetti, B. Richou, R. Engelman, and L. J. Radziemski, “Measurements of the resonance lines of 6Li and 7Li by Doppler-free frequency modulation spectroscopy,” Phys. Rev. A 52, 2682–2688 (1995).
[Crossref] [PubMed]

G. Shimkaveg, W. W. Quivers, R. R. Dasari, and M. S. Feld, “Direct measurement of velocity-changing collision cross section by laser optical pumping,” Phys. Rev. A 48, 1409–1418 (1993).
[Crossref] [PubMed]

J. R. Ackerhalt and B. W. Shore, “Rate equations versus Bloch equations in multiphoton ionization,” Phys. Rev. A 16, 277–282 (1977).
[Crossref]

Phys. Rev. Lett. (1)

J. Chen, J. G. Story, J. J. Tollet, and R. G. Hulet, “Adiabatic cooling of atoms by an intense standing wave,” Phys. Rev. Lett. 69, 1344–1346 (1992).
[Crossref] [PubMed]

Rev. Mod. Phys. (3)

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[Crossref]

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[Crossref]

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[Crossref]

Rev. Sci. Instrum. (3)

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, and I. E. Olivares, “In situ density measurements for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[Crossref]

M. G. Payne, L. Deng, and N. Thonnard, “Applications of resonance ionization mass spectrometry,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
[Crossref]

C. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

Spectrochim. Acta Rev. (1)

J. Franzke, A. Schnell, and K. Niemax, “Spectroscopic properties of commercial laser diodes,” Spectrochim. Acta Rev. 15, 379–95 (1993).

Z. Phys. D (1)

J. Brust, D. Veza, and K. Niemax, “Collisional excitationtransfer between lithium isotopes,” Z. Phys. D 32, 305–309 (1995).
[Crossref]

Other (6)

R. Loudon, “Quantum mechanics of the atom-radiation interaction,” in The Quantum Theory of Light, 2nd ed., R. Loudon, ed. (Clarendon, Oxford, 1981), pp. 39–78.

R. D. Cowan, ed., The Theory of Atomic Structure Spectra (U. California Press, Berkeley, Calif., 1981).

P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, New York, 1995), pp. 349–442.

F. J. Duarte, “Dispersive external cavity semiconductor lasers,” in Tunable Laser Applications, F. J. Duarte, ed. (Dekker, New York, 1995), pp. 153–178.

D. R. Lide, ed., Handbook of Chemistry and Physics, 71st ed. (CRC, Boca Raton, Fla., 1991), pp. 5–70.

W. Demtröder, Laser Spectroscopy Basic Concepts and Instrumentation (Springer-Verlag, Berlin, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Values of Nifq=|i|Dq|f|2/D2 for each transition of Li. N labels the five Zeeman multiplets discussed in the text (note that N=2 is shown twice). Thicker horizontal lines, ground states (J=1/2); thinner horizontal lines, excited states (J=3/2); dotted lines, transitions with q=-1; vertical lines, transitions with q=0; dashed lines, transitions with q=1.

Fig. 2
Fig. 2

Doppler-free experimental setup: dso, digital storage oscilloscope.

Fig. 3
Fig. 3

(a) Doppler-limited Li lines. Experimental and least-squares fits for 7Li only and for the sum of 6Li and 7Li. n(7Li)=1.9×109 cm-3, n(6Li)=4.6×1010 cm-3, T=408 °C, 7Li(4.1%). (b) Optically thick Doppler-limited Li lines. Experimental and least-squares fits for 7Li only and for the sum of 6Li and 7Li. n(7Li)=2.5×1010 cm-3, n(6Li)=4.3×1011cm-3, T=549 °C.

Fig. 4
Fig. 4

Vapor-pressure curves for 6Li and 7Li. The solid curve was obtained from the literature.29 Circles, experimental data: T and n were obtained from fitting of the Doppler-limited absorption spectra and P from the ideal gas law.

Fig. 5
Fig. 5

(a) Doppler-free spectrum at low Ar pressure: PAr=0.018 Torr, Ip=21 W/m2, nLi=5×109 cm-3, T=375 °C. Result of the fitting: Γ=5.9×107 s-1, γvc=4.5×106 s-1. (b) Doppler-free spectrum at high Ar pressure. PAr=4.46 Torr, Ip=79 W/m2, nLi=5×109 cm-3, T=375 °C. Result of the fitting: Γ=1.5×108 s-1, γvc=2.5×107 s-1.

Fig. 6
Fig. 6

Γ versus Ar pressure obtained from fitting of the Doppler-free spectra and extrapolating to Ip=0.

Fig. 7
Fig. 7

γvc versus Ar pressure obtained from fitting of the Doppler-free spectra and extrapolating to Ip=0.

Fig. 8
Fig. 8

Comparison of experimental and theoretical transmittance curves versus laser intensity (calculated starting from the Doppler-free spectra). P=0.01 Torr: Γ=5.4×107 s-1, γvc=2.9×106 s-1. P=0.35 Torr: Γ=6.3×107 s-1, γvc=1.0×107 s-1. P=0.93 Torr: Γ=7.8×107 s-1, γvc=1.5×107 s-1. P=2.85 Torr: Γ=1.1×108 s-1, γvc=2.2×107 s-1.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

|i|Dq|f|2=|αiJiIFimi|Dq|αfJfIFfmf|2=C(FiFfmi, -mf; 1q)2(2Fi+1)×(2Ff+1)W(JiI1Ff;FiJf)2δSi,Sf×(2Ji+1)(2Jf+1)×W(LiSi1Jf; JiLf)2D2,
afi=4ω3Ke3c3 q|i|Dq|f|2,
γ=τ-1=Af=iafi=4ω3Ke3c3(2Lf+1) D2.
|Ωif|2=8πIKec2 |i|D0|f|2,
ρ˙ii=fWif(ρff-ρii)+(γT+γvc)(ρii0-ρii)+fafiρff,
ρ˙ff=iWif(ρii-ρff)+(γT+γvc)(ρff0-ρff)-γρff,
Wif=½|Ωif|2Γ(δif-kv)2+Γ2,
γT=v/d,
ρ˙11=W13(ρ33-ρ11)+W14(½ρ44-ρ11)+γ(89ρ33+59ρ44)+(γT+γvc)(-ρ11),
ρ˙22=W25(ρ55-ρ22)+W24(ρ44-ρ22)+W23(ρ33-½ρ22)+γ(19ρ33+49ρ44+ρ55)+(γT+γvc)(-ρ22),
ρ˙33=W13(ρ11-ρ33)+W23(½ρ22-ρ33)-γρ33-(γT+γvc)ρ33,
ρ˙44=W24(ρ22-ρ44)+W14(ρ11-½ρ44)-γρ44-(γT+γvc)ρ44;
1=ρ11+ρ22+ρ33+ρ44+ρ55.
dI=hνifnifWif(ρff-ρii)dx=-hνifnγρedx,
F(v)=m2πkBT1/2 exp-mv22kB T,
dId0-dId=hνifnifWif+(ρff+-ρii+)dx-hνifnifWif+(ρff--ρii-)dx,
ρ˙g=Wgeggge ρe-ρg+γρe,
dI=-σIndx,
σ=hνγI ρehνγI F(δ/k)ρe(δ=0)dv.
kν=σn=gegg nτ λ2ln 24π3/2 1ΔνD 11+S0 ×exp-4 ln 2ΔνD2 (ν-ν0)2,
ΔνD=8kBT ln 2mλ21/2
S0=12 1+ggge 1γΓ λ3I2πchτ gegg
Iν=I0 exp(-kνx),
kνdν=λ028π gegg nτ.
dΓ/dP=2.5×107s-1/Torr.
d(Δν)/dP=dΓ/dP/π=8.0MHz/Torr
dγvc/dP=3.2×107s-1/Torr=3.3×105s-1/Pa.

Metrics