Abstract

The benefits of a direct visualization of space-charge grating buildup are described. The visualization is carried out by a simple repetitive computer program, which simulates the basic processes in the band-transport model and displays the result graphically or in the form of numerical data. The simulation sheds light on issues that are not amenable to analytical solutions, such as the spectral content of the wave forms, cross talk in three-beam interaction, and the range of applications of the band-transport model.

[Optical Society of America ]

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. V. Kukhtarev , V. B. Markov , S. G. Odulov , M. S. Soskin , and V. L. Vinetskii , Ferroelectrics FEROA8 22 , 949 960 ( 1979
    [CrossRef]
  2. N. V. Kukhtarev , P. Buchhave , and S. Lyuksyutov , Phys. Rev. A PLRAAN 55 , 3133 3136 ( 1997
    [CrossRef]
  3. P. E. Andersen , P. Buchhave , P. M. Petersen , and M. V. Vasnetsov , J. Opt. Soc. Am. B JOBPDE 12 , 1422 1433 ( 1995
    [CrossRef]
  4. P. E. Andersen , P. M. Petersen , and P. Buchhave , J. Opt. Soc. Am. B JOBPDE 12 , 2453 2462 ( 1995
    [CrossRef]
  5. M. Vasnetsov , S. Lyuksyutov , P. Buchhave , P. E. Andersen , and P. M. Petersen , Spectral dependence of cross talk between holographic gratings in photorefractive Bi 12 SiO 20 , Appl. Phys. B APBOEM 65 , 523 526 ( 1997
    [CrossRef]

Other (5)

N. V. Kukhtarev , V. B. Markov , S. G. Odulov , M. S. Soskin , and V. L. Vinetskii , Ferroelectrics FEROA8 22 , 949 960 ( 1979
[CrossRef]

N. V. Kukhtarev , P. Buchhave , and S. Lyuksyutov , Phys. Rev. A PLRAAN 55 , 3133 3136 ( 1997
[CrossRef]

M. Vasnetsov , S. Lyuksyutov , P. Buchhave , P. E. Andersen , and P. M. Petersen , Spectral dependence of cross talk between holographic gratings in photorefractive Bi 12 SiO 20 , Appl. Phys. B APBOEM 65 , 523 526 ( 1997
[CrossRef]

P. E. Andersen , P. Buchhave , P. M. Petersen , and M. V. Vasnetsov , J. Opt. Soc. Am. B JOBPDE 12 , 1422 1433 ( 1995
[CrossRef]

P. E. Andersen , P. M. Petersen , and P. Buchhave , J. Opt. Soc. Am. B JOBPDE 12 , 2453 2462 ( 1995
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Flow diagram of the simulation program.

Fig. 2
Fig. 2

Grating variables at different stages of the time development: First row, incident intensity (I); second row, intensity (I), electron density (n), density of ionized donors (v), and space-charge field (w) during transient development; third row, the same grating variables at steady state. The bottom three rows show Fourier spectra of electron density (n), density of ionized donors (v) and space-charge field (w) in the steady-state condition. The spectrum of the electron density is indistinguishable from that of the intensity. (a) The pure diffusion case (no applied field), (b) a mixed situation with both diffusion and drift, (c) the drift-dominated case.

Fig. 3
Fig. 3

Grating variables in the three-beam case as a function of position. The abscissa covers one and one-half periods of the difference frequency between the two closely spaced beams (object beams). The curves (top to bottom) are space-charge field, incident intensity, ionized donor density, and free-electron density.

Fig. 4
Fig. 4

(a) Harmonics of the three-beam case corresponding to the parameters of Ref. 5. The abscissa covers zero to the sixth harmonic. (b) A more detailed view of the spectral components near the first and the second harmonics.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Generation(P-Qv)(1+m¯cos u),
Recombinationnv,
Diffusionλn,
Driftnw.
w=1+n-v.
Generationandrecombination
n˙=-v˙=(P-Qv)(1+m¯cos u)-nv,
Totalcurrentdensityj=nw-λn,
Gaussslaww=1+n-v,
Externalcircuitj=0.
n=n0(1+a1 cos u+b1 sin u)=n0[1+a cos(u+φ)],
w=λ nn-λ n2n2,
v=1+n-λ nn+λ n2n2.
P(1+m¯cos u)=[Q(1+m¯cos u)-n]×1+n-λ nn+λ n2n2.
P(1+m¯cos u)=-n+λn-λ n2n,

Metrics