Abstract

Spectral and temporal characteristics of light-induced absorption for BaTiO3 crystals undoped and doped with various amounts of Ce were investigated and compared. Dark decay of light-induced absorption with two time constants corresponding to two shallow levels was observed in all crystals investigated. Light-induced absorption spectra were then resolved into two components, slow and fast, according to the dark-decay time constants. The resolved spectra reveal that in all the undoped and Ce-doped crystals the two shallow levels have the same defect origins, independently of doping. The thermal activation energies of the two shallow levels were deduced to be 0.7 and 0.5 eV in all crystals, and the 0.7-eV shallow level is attributed to Fe4+/5+. Some other important parameters for the two shallow levels were also determined.

[Optical Society of America ]

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Kra tzig , F. Welz , R. Orlowski , V. Doormann , and M. Rosenkranz , Holographic storage properties of BaTiO 3 , Solid State Commun. SSCOA4 34 , 817 ( 1980
    [CrossRef]
  2. R. A. Rupp , A. Maillard , and J. Walter , Light-induced scattering in photorefractive crystals , Appl. Phys. A: Solids Surf. APSFDB 49 , 259 ( 1989
    [CrossRef]
  3. A. Motes and J. J. Kim , Intensity-dependent absorption coefficient in photorefractive BaTiO 3 crystals , J. Opt. Soc. Am. B JOBPDE 4 , 1397 ( 1987
    [CrossRef]
  4. G. A. Brost , R. A. Motes , and J. R. Rotge , Intensity-dependent absorption and photorefractive effects in barium titanate , J. Opt. Soc. Am. B JOBPDE 5 , 1879 ( 1988
    [CrossRef]
  5. D. Mahgerefteh and J. Feinberg , Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate , Phys. Rev. Lett. PRLTAO 64 , 195 ( 1990
    [CrossRef]
  6. G. A. Brost and R. A. Motes , Origin of the sublinear photorefractive response time in BaTiO 3 , Opt. Lett. OPLEDP 15 , 1194 ( 1990
    [CrossRef] [PubMed]
  7. L. Holtmann , M. Unland , E. Kra tzig , and G. Godefroy , Conductivity and light-induced absorption in BaTiO 3 , Appl. Phys. A: Solids Surf. APSFDB 51 , 13 ( 1990
    [CrossRef]
  8. P. Tayebati and D. Mahgerefteh , Theory of the photorefractive effects for Bi 12 SiO 20 and BaTiO 3 with shallow traps , J. Opt. Soc. Am. B JOBPDE 8 , 1053 ( 1991
    [CrossRef]
  9. U. V. Stevendaal , K. Buse , S. Ka mper , H. Hesse , and E. Kra tzig , Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron , Appl. Phys. B: Photophys. Laser Chem. APBOEM 63 , 315 ( 1996
    [CrossRef]
  10. R. N. Schwartz and B. A. Wechesler , Electron-paramagnetic-resonance study of transition-metal-doped BaTiO 3 . Effect of material processing on Fermi-level position , Phys. Rev. B PRBMDO 48 , 7057 ( 1993
    [CrossRef]
  11. H. Kro se , R. Scharfschwerdt , O. F. Schimer , and H. Hesse , Light-induced charge transport via three charge states of rhodium , Appl. Phys. B: Photophys. Laser Chem. APBOEM 61 , 1 ( 1995
    [CrossRef]
  12. Y. Lian , S. Dou , H. Gao , Y. Zhu , X. Wu , C. Yang , and P. Ye , Mechanism transformation with wavelength of self-pumped phase conjunction in BaTiO 3 :Ce , Opt. Lett. OPLEDP 19 , 610 ( 1994
    [CrossRef] [PubMed]
  13. G. D. Bacher , M. P. Chiao , G. J. Dunning , M. B. Klein , C. C. Klein , C. C. Nelson , and B. A. Wechesler , Ultralong dark decay measurements in BaTiO 3 , Opt. Lett. OPLEDP 21 , 18 ( 1996
    [CrossRef] [PubMed]
  14. A. Motes , G. Brost , and J. Rotge , Temporal behavior of the intensity-dependent absorption in photorefractive BaTiO 3 , Opt. Lett. OPLEDP 13 , 509 ( 1988
    [CrossRef] [PubMed]
  15. G. A. Brost and R. A. Motes , Photoinduced absorption in photorefractive BaTiO 3 , Opt. Lett. OPLEDP 15 , 538 ( 1990
    [CrossRef] [PubMed]
  16. K. Buse and T. Bierwirth , Dynamics of light-induced absorption in BaTiO 3 and application for intensity stabilization , J. Opt. Soc. Am. B JOBPDE 12 , 629 ( 1995
    [CrossRef]
  17. H. W. Song , S. X. Dou , M. J. Chi , H. Gao , Y. Zhu , and P. X. Ye , Studies of shallow levels in undoped and Rh-doped BaTiO 3 , J. Opt. Soc. Am. B JOBPDE 15 , 1329 ( 1998
    [CrossRef]

Chi, M. J

Doormann, V

E. Kra tzig , F. Welz , R. Orlowski , V. Doormann , and M. Rosenkranz , Holographic storage properties of BaTiO 3 , Solid State Commun. SSCOA4 34 , 817 ( 1980
[CrossRef]

Dou, S

Klein, C. C

Rosenkranz, M

E. Kra tzig , F. Welz , R. Orlowski , V. Doormann , and M. Rosenkranz , Holographic storage properties of BaTiO 3 , Solid State Commun. SSCOA4 34 , 817 ( 1980
[CrossRef]

Schimer, O. F

H. Kro se , R. Scharfschwerdt , O. F. Schimer , and H. Hesse , Light-induced charge transport via three charge states of rhodium , Appl. Phys. B: Photophys. Laser Chem. APBOEM 61 , 1 ( 1995
[CrossRef]

Song, H. W

Stevendaal, U. V

U. V. Stevendaal , K. Buse , S. Ka mper , H. Hesse , and E. Kra tzig , Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron , Appl. Phys. B: Photophys. Laser Chem. APBOEM 63 , 315 ( 1996
[CrossRef]

Wechesler, B. A

R. N. Schwartz and B. A. Wechesler , Electron-paramagnetic-resonance study of transition-metal-doped BaTiO 3 . Effect of material processing on Fermi-level position , Phys. Rev. B PRBMDO 48 , 7057 ( 1993
[CrossRef]

Welz, F

E. Kra tzig , F. Welz , R. Orlowski , V. Doormann , and M. Rosenkranz , Holographic storage properties of BaTiO 3 , Solid State Commun. SSCOA4 34 , 817 ( 1980
[CrossRef]

Other

E. Kra tzig , F. Welz , R. Orlowski , V. Doormann , and M. Rosenkranz , Holographic storage properties of BaTiO 3 , Solid State Commun. SSCOA4 34 , 817 ( 1980
[CrossRef]

R. A. Rupp , A. Maillard , and J. Walter , Light-induced scattering in photorefractive crystals , Appl. Phys. A: Solids Surf. APSFDB 49 , 259 ( 1989
[CrossRef]

A. Motes and J. J. Kim , Intensity-dependent absorption coefficient in photorefractive BaTiO 3 crystals , J. Opt. Soc. Am. B JOBPDE 4 , 1397 ( 1987
[CrossRef]

G. A. Brost , R. A. Motes , and J. R. Rotge , Intensity-dependent absorption and photorefractive effects in barium titanate , J. Opt. Soc. Am. B JOBPDE 5 , 1879 ( 1988
[CrossRef]

D. Mahgerefteh and J. Feinberg , Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate , Phys. Rev. Lett. PRLTAO 64 , 195 ( 1990
[CrossRef]

G. A. Brost and R. A. Motes , Origin of the sublinear photorefractive response time in BaTiO 3 , Opt. Lett. OPLEDP 15 , 1194 ( 1990
[CrossRef] [PubMed]

L. Holtmann , M. Unland , E. Kra tzig , and G. Godefroy , Conductivity and light-induced absorption in BaTiO 3 , Appl. Phys. A: Solids Surf. APSFDB 51 , 13 ( 1990
[CrossRef]

P. Tayebati and D. Mahgerefteh , Theory of the photorefractive effects for Bi 12 SiO 20 and BaTiO 3 with shallow traps , J. Opt. Soc. Am. B JOBPDE 8 , 1053 ( 1991
[CrossRef]

U. V. Stevendaal , K. Buse , S. Ka mper , H. Hesse , and E. Kra tzig , Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron , Appl. Phys. B: Photophys. Laser Chem. APBOEM 63 , 315 ( 1996
[CrossRef]

R. N. Schwartz and B. A. Wechesler , Electron-paramagnetic-resonance study of transition-metal-doped BaTiO 3 . Effect of material processing on Fermi-level position , Phys. Rev. B PRBMDO 48 , 7057 ( 1993
[CrossRef]

H. Kro se , R. Scharfschwerdt , O. F. Schimer , and H. Hesse , Light-induced charge transport via three charge states of rhodium , Appl. Phys. B: Photophys. Laser Chem. APBOEM 61 , 1 ( 1995
[CrossRef]

Y. Lian , S. Dou , H. Gao , Y. Zhu , X. Wu , C. Yang , and P. Ye , Mechanism transformation with wavelength of self-pumped phase conjunction in BaTiO 3 :Ce , Opt. Lett. OPLEDP 19 , 610 ( 1994
[CrossRef] [PubMed]

G. D. Bacher , M. P. Chiao , G. J. Dunning , M. B. Klein , C. C. Klein , C. C. Nelson , and B. A. Wechesler , Ultralong dark decay measurements in BaTiO 3 , Opt. Lett. OPLEDP 21 , 18 ( 1996
[CrossRef] [PubMed]

A. Motes , G. Brost , and J. Rotge , Temporal behavior of the intensity-dependent absorption in photorefractive BaTiO 3 , Opt. Lett. OPLEDP 13 , 509 ( 1988
[CrossRef] [PubMed]

G. A. Brost and R. A. Motes , Photoinduced absorption in photorefractive BaTiO 3 , Opt. Lett. OPLEDP 15 , 538 ( 1990
[CrossRef] [PubMed]

K. Buse and T. Bierwirth , Dynamics of light-induced absorption in BaTiO 3 and application for intensity stabilization , J. Opt. Soc. Am. B JOBPDE 12 , 629 ( 1995
[CrossRef]

H. W. Song , S. X. Dou , M. J. Chi , H. Gao , Y. Zhu , and P. X. Ye , Studies of shallow levels in undoped and Rh-doped BaTiO 3 , J. Opt. Soc. Am. B JOBPDE 15 , 1329 ( 1998
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the two-shallow-level (one deep and two shallow levels) charge-transport model for p-type BaTiO3. CB, conduction band; VB, valence band.

Fig. 2
Fig. 2

Steady-state light-induced absorption spectra for BaTiO3 undoped and doped with various amounts of Ce. Pump light intensity, I=500 mW/cm2. The wavelength of pump light λp is 514.5 nm. hν is the photon energy of the probe light. Inset, experimental arrangement for the measurement of light-induced absorption. The c axis of the crystal comes out of the paper.

Fig. 3
Fig. 3

Typical dark-decay dynamics of normalized light-induced absorption at different probe wavelengths in 50-ppm Ce-doped BaTiO3. The pump light (I=500 mW/cm2, λp=514.5 nm) was blocked at t=0.

Fig. 4
Fig. 4

Resolved light-induced absorption spectra according to the dark-decay time constant for all the crystals: (a) the slow component α1, (b) the fast component α2. hν is the photon energy of the probe light.

Fig. 5
Fig. 5

Arrhenius plots19 of the logarithm of dark-decay time constants τ1 and τ2 for undoped (triangle) and for 50-ppm Ce-doped (circle) BaTiO3 (I=500 mW/cm2, λp=514.5 nm).

Fig. 6
Fig. 6

Inverse buildup time constant 1/τ of light-induced (λp=514.5 nm) absorption versus pump intensity in 50-ppm Ce-doped BaTiO3.

Fig. 7
Fig. 7

Slow component α1 and fast component α2 of light-induced (λp=514.5 nm) absorption versus pump intensity I in 50-ppm Ce-doped BaTiO3. The probe wavelength is 633 nm. Squares and circles, experimental results; curves, theoretical fits.

Fig. 8
Fig. 8

Relative magnitude of the fast component of light-induced (λp=514.5 nm) absorption, α2/(α1+α2), versus pump intensity I, obtained from Fig. 7.

Tables (3)

Tables Icon

Table 1 Parameters of the BaTiO3 Crystals Used in Our Experiments

Tables Icon

Table 2 Parameters Determined from Fitting of the Dynamics of Light-Induced Absorption in Fig. 2

Tables Icon

Table 3 Charge-Transport Model Parameters for the Two Shallow Levels |1〉 and |2〉 of 50-ppm Ce-Doped BaTiO3

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

αli
=d-1 ln[Iprobe(pumplightoff)/Iprobe(pumplighton)],
αli=α1[exp(-t/τ1)]+α2[exp(-t/τ2)]
τk-1=βk/(1+ρk),k=1, 2,
βk(T)=βk0 exp(-Eak/kBT),k=1, 2,
αli=α1[1-exp(-t/τ1)]+α2[1-exp(-t/τ2)],
τk=(qkskI+βk+hrk)-1,k=1, 2,
αksknk(1+βkeμ/rkσ)-1,k=1, 2,

Metrics