Abstract

We present a detailed study of the characteristics of electro-optic sampling of ultrashort terahertz (THz) pulses including frequency-dependent phase matching, reflection, dispersive propagation, and absorption. In particular, we investigated the origin of the oscillatory tail that is often observed in electro-optic sampling traces and found that this tail results from the dispersive propagation of the THz pulse through the electro-optic crystal. For extremely broadband THz pulses, the THz pulse is additionally distorted by reflection and absorption in both the generation and the electro-optic detection crystal. The modeling of the distorted electro-optic sampling trace permits a detailed reconstruction of the initial THz pulse.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Harde, S. Keiding, and D. Grischkowsky, Phys. Rev. Lett. 66, 1834 (1991).
    [CrossRef] [PubMed]
  2. R. M. Jacobsen, D. M. Mittleman, and M. C. Nuss, Opt. Lett. 21, 2011 (1996).
    [CrossRef] [PubMed]
  3. L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, Chem. Phys. Lett. 240, 330 (1995).
    [CrossRef]
  4. J. T. Kindt and C. A. Schmuttenmaer, J. Phys. Chem. 100, 10373 (1996).
    [CrossRef]
  5. G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, Appl. Phys. Lett. 39, 295 (1981).
    [CrossRef]
  6. M. van Exter, C. Fattinger, and D. Grischkowsky, Appl. Phys. Lett. 55, 337 (1989).
    [CrossRef]
  7. N. Katzenellenbogen and D. Grischkowsky, Appl. Phys. Lett. 58, 222 (1991).
    [CrossRef]
  8. X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990).
    [CrossRef]
  9. D. You, R. R. Jones, P. H. Bucksbaum, and D. R. Dykaar, Opt. Lett. 18, 290 (1993).
    [CrossRef]
  10. B. B. Hu, E. A. de Souza, W. H. Knox, J. E. Cunningham, M. C. Nuss, A. V. Kuznetsov, and S. L. Chuang, Phys. Rev. Lett. 47, 1689 (1995).
    [CrossRef]
  11. X.-C. Zhang, Y. Yin, K. Yang, and L. J. Schowalter, Phys. Rev. Lett. 69, 2303 (1992).
    [CrossRef] [PubMed]
  12. A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
    [CrossRef]
  13. B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, Appl. Phys. Lett. 56, 506 (1990).
    [CrossRef]
  14. L. Xu, X.-C. Zhang, and D. H. Auston, Appl. Phys. Lett. 61, 1784 (1992).
    [CrossRef]
  15. J. E. Pedersen, S. R. Keiding, C. B. Sørensen, P. E. Lindelof, W. W. Rühle, and X. Q. Zhou, J. Appl. Phys. 74, 7022 (1993).
    [CrossRef]
  16. P. U. Jepsen, C. Winnewasser, M. Schall, V. Schyja, S. R. Keiding, and H. P. Helm, Phys. Rev. E 53, R3052 (1996).
    [CrossRef]
  17. Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 68, 1604 (1996).
    [CrossRef]
  18. Q. Wu, M. Litz, and X.-C. Zhang, Appl. Phys. Lett. 68, 2924 (1996).
    [CrossRef]
  19. A. Nahata, A. S. Weling, and T. F. Heinz, Appl. Phys. Lett. 69, 2321 (1996).
    [CrossRef]
  20. Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 70, 1784 (1997).
    [CrossRef]
  21. Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 71, 1285 (1997).
    [CrossRef]
  22. D. H. Auston and M. C. Nuss, IEEE J. Quantum Electron. 24, 184 (1988).
    [CrossRef]
  23. H. J. Bakker, S. Hunsche, and H. Kurz, Phys. Rev. B 49, 9331 (1993).
    [CrossRef]
  24. M. van Exter, C. Fattinger, and D. Grischkowsky, Opt. Lett. 14, 1128 (1989).
    [CrossRef]
  25. T. Hattori, Y. Homma, A. Mitsuishi, and M. Tacke, Opt. Commun. 7, 229 (1973).
    [CrossRef]
  26. R. E. Nahory and H. Y. Fan, Phys. Rev. 156, 825 (1967).
    [CrossRef]

1997

Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 70, 1784 (1997).
[CrossRef]

Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 71, 1285 (1997).
[CrossRef]

1996

R. M. Jacobsen, D. M. Mittleman, and M. C. Nuss, Opt. Lett. 21, 2011 (1996).
[CrossRef] [PubMed]

J. T. Kindt and C. A. Schmuttenmaer, J. Phys. Chem. 100, 10373 (1996).
[CrossRef]

P. U. Jepsen, C. Winnewasser, M. Schall, V. Schyja, S. R. Keiding, and H. P. Helm, Phys. Rev. E 53, R3052 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 68, 1604 (1996).
[CrossRef]

Q. Wu, M. Litz, and X.-C. Zhang, Appl. Phys. Lett. 68, 2924 (1996).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, Appl. Phys. Lett. 69, 2321 (1996).
[CrossRef]

1995

B. B. Hu, E. A. de Souza, W. H. Knox, J. E. Cunningham, M. C. Nuss, A. V. Kuznetsov, and S. L. Chuang, Phys. Rev. Lett. 47, 1689 (1995).
[CrossRef]

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
[CrossRef]

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, Chem. Phys. Lett. 240, 330 (1995).
[CrossRef]

1993

D. You, R. R. Jones, P. H. Bucksbaum, and D. R. Dykaar, Opt. Lett. 18, 290 (1993).
[CrossRef]

H. J. Bakker, S. Hunsche, and H. Kurz, Phys. Rev. B 49, 9331 (1993).
[CrossRef]

J. E. Pedersen, S. R. Keiding, C. B. Sørensen, P. E. Lindelof, W. W. Rühle, and X. Q. Zhou, J. Appl. Phys. 74, 7022 (1993).
[CrossRef]

1992

L. Xu, X.-C. Zhang, and D. H. Auston, Appl. Phys. Lett. 61, 1784 (1992).
[CrossRef]

X.-C. Zhang, Y. Yin, K. Yang, and L. J. Schowalter, Phys. Rev. Lett. 69, 2303 (1992).
[CrossRef] [PubMed]

1991

H. Harde, S. Keiding, and D. Grischkowsky, Phys. Rev. Lett. 66, 1834 (1991).
[CrossRef] [PubMed]

N. Katzenellenbogen and D. Grischkowsky, Appl. Phys. Lett. 58, 222 (1991).
[CrossRef]

1990

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990).
[CrossRef]

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, Appl. Phys. Lett. 56, 506 (1990).
[CrossRef]

1989

M. van Exter, C. Fattinger, and D. Grischkowsky, Appl. Phys. Lett. 55, 337 (1989).
[CrossRef]

M. van Exter, C. Fattinger, and D. Grischkowsky, Opt. Lett. 14, 1128 (1989).
[CrossRef]

1988

D. H. Auston and M. C. Nuss, IEEE J. Quantum Electron. 24, 184 (1988).
[CrossRef]

1981

G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, Appl. Phys. Lett. 39, 295 (1981).
[CrossRef]

1973

T. Hattori, Y. Homma, A. Mitsuishi, and M. Tacke, Opt. Commun. 7, 229 (1973).
[CrossRef]

1967

R. E. Nahory and H. Y. Fan, Phys. Rev. 156, 825 (1967).
[CrossRef]

Appl. Phys. Lett.

G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, Appl. Phys. Lett. 39, 295 (1981).
[CrossRef]

M. van Exter, C. Fattinger, and D. Grischkowsky, Appl. Phys. Lett. 55, 337 (1989).
[CrossRef]

N. Katzenellenbogen and D. Grischkowsky, Appl. Phys. Lett. 58, 222 (1991).
[CrossRef]

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990).
[CrossRef]

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
[CrossRef]

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, Appl. Phys. Lett. 56, 506 (1990).
[CrossRef]

L. Xu, X.-C. Zhang, and D. H. Auston, Appl. Phys. Lett. 61, 1784 (1992).
[CrossRef]

Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 68, 1604 (1996).
[CrossRef]

Q. Wu, M. Litz, and X.-C. Zhang, Appl. Phys. Lett. 68, 2924 (1996).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, Appl. Phys. Lett. 69, 2321 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 70, 1784 (1997).
[CrossRef]

Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 71, 1285 (1997).
[CrossRef]

Chem. Phys. Lett.

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, Chem. Phys. Lett. 240, 330 (1995).
[CrossRef]

IEEE J. Quantum Electron.

D. H. Auston and M. C. Nuss, IEEE J. Quantum Electron. 24, 184 (1988).
[CrossRef]

J. Appl. Phys.

J. E. Pedersen, S. R. Keiding, C. B. Sørensen, P. E. Lindelof, W. W. Rühle, and X. Q. Zhou, J. Appl. Phys. 74, 7022 (1993).
[CrossRef]

J. Phys. Chem.

J. T. Kindt and C. A. Schmuttenmaer, J. Phys. Chem. 100, 10373 (1996).
[CrossRef]

Opt. Commun.

T. Hattori, Y. Homma, A. Mitsuishi, and M. Tacke, Opt. Commun. 7, 229 (1973).
[CrossRef]

Opt. Lett.

Phys. Rev.

R. E. Nahory and H. Y. Fan, Phys. Rev. 156, 825 (1967).
[CrossRef]

Phys. Rev. B

H. J. Bakker, S. Hunsche, and H. Kurz, Phys. Rev. B 49, 9331 (1993).
[CrossRef]

Phys. Rev. E

P. U. Jepsen, C. Winnewasser, M. Schall, V. Schyja, S. R. Keiding, and H. P. Helm, Phys. Rev. E 53, R3052 (1996).
[CrossRef]

Phys. Rev. Lett.

B. B. Hu, E. A. de Souza, W. H. Knox, J. E. Cunningham, M. C. Nuss, A. V. Kuznetsov, and S. L. Chuang, Phys. Rev. Lett. 47, 1689 (1995).
[CrossRef]

X.-C. Zhang, Y. Yin, K. Yang, and L. J. Schowalter, Phys. Rev. Lett. 69, 2303 (1992).
[CrossRef] [PubMed]

H. Harde, S. Keiding, and D. Grischkowsky, Phys. Rev. Lett. 66, 1834 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental electro-optic sampling traces measured with 50-fs pulses that have a central wavelength of 780 nm for three electro-optic ZnTe crystals of different lengths.

Fig. 2
Fig. 2

Calculated electro-optic sampling traces for three ZnTe crystals of different lengths with an assumed probe wavelength of 780 nm. In the calculations the effects of the dispersive phonon–polariton propagation and the phase matching of the electro-optic sampling process in the ZnTe crystal are accounted for.

Fig. 3
Fig. 3

Experimental and calculated frequency spectra of the oscillatory tail of the electro-optic sampling trace measured with a 1.5-mm ZnTe crystal by means of probe pulses with central wavelengths of 780 and 840 nm.

Fig. 4
Fig. 4

Experimental (a) and calculated (b) electro-optic sampling traces of a THz pulse generated in a GaAs crystal and detected with a 30-μm ZnTe crystal by means of 12-fs optical pulses with a central wavelength of 800 nm.

Fig. 5
Fig. 5

Fourier transforms of the experimental (a) and calculated (b) electro-optic sampling traces of Fig. 4.

Fig. 6
Fig. 6

Calculated THz pulse shapes: (a) initially generated THz pulse shape, (b) THz pulse shape after emission out of GaAs, (c) THz pulse shape after 30-μm ZnTe, including the effects of multiple reflections in the crystal (Fabry–Perot resonances).

Fig. 7
Fig. 7

Fourier transforms of the three calculated THz pulse shapes of Fig. 6.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E(z, t)=dωE(0, ω)exp[ik(ω)z-iωt],
(ω)=el+stωTO2ωTO2-ω2+2iγω,
Iref(ω)/I0(ω)=[n(ω)-1]2+κ(ω)2[n(ω)+1]2+κ(ω)2.
ω1n1+ωTHznTHz=ω2n2,
(ω2-ω1)n1+ω1 nωω1=ωTHznTHz,
ΔIEO(τ)r410ldz-dtIpE(z, t),

Metrics