Abstract

A low-threshold (350-mW) stable single-frequency continuous-wave optical parametric oscillator was demonstrated. Tunable idler output up to 450 mW was obtained near 3 μm by resonating both the signal wave and a single-frequency 1.06-μm Nd: YAG pump laser in a periodically poled lithium niobate optical-parametric-oscillator ring resonator. Tunable output wavelengths from 2.9 μm to 3.25 μm were also demonstrated. By inserting an etalon, we achieved an absolute midinfrared single-frequency stability of +/-0.01 nm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, Opt. Lett. 21, 1336 (1996).
    [CrossRef] [PubMed]
  2. G. Breitenbach, S. Schiller, and J. Mlynek, J. Opt. Soc. Am. B 12, 2095 (1995).
    [CrossRef]
  3. M. Schneidt, B. Beier, R. Knappe, K. J. Boller, and R. Wallenstein, J. Opt. Soc. Am. B 12, 2087 (1995).
    [CrossRef]
  4. D. Chen, D. Hinkley, J. Pyo, J. Swenson, and R. Fields, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 241–243.
  5. K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, Opt. Lett. 22, 1293 (1997).
    [CrossRef]
  6. D. Chen, D. Hinkley, R. A. Chodzko, C. Fincher, and R. A. Fields, Opt. Lett. 20, 1283 (1995).
    [CrossRef] [PubMed]
  7. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
    [CrossRef]
  8. F. G. Coleville, M. J. Padgett, and M. H. Dunn, in Advanced Solid-State Lasers, T. Y. Fan and B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), p. 438.
  9. D. Lee and N. C. Wong, Opt. Lett. 17, 13 (1992).
    [CrossRef] [PubMed]

1997 (1)

1996 (1)

1995 (3)

1992 (1)

1988 (1)

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (4)

Other (2)

D. Chen, D. Hinkley, J. Pyo, J. Swenson, and R. Fields, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 241–243.

F. G. Coleville, M. J. Padgett, and M. H. Dunn, in Advanced Solid-State Lasers, T. Y. Fan and B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), p. 438.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical schematic of the Drever–Pound stabilized pump and idler-resonant cw OPO.

Fig. 2
Fig. 2

OPO idler output power at 2.9 μm as a function of incident 1.06-μm pump power.

Fig. 3
Fig. 3

1.06-μm intensity within the OPO cavity measured as leakage through one mirror (see Fig. 1) as a function of the piezo scan mirror position. The narrower curve represents the intensity just below OPO threshold, while the flattop curve was obtained for a power six times above threshold.

Fig. 4
Fig. 4

OPO output wavelength versus PPLN temperature obtained by a 2.5-cm PPLN crystal with three domain periods.

Fig. 5
Fig. 5

OPO 2.9-μm single-frequency output measured with a Burleigh confocal etalon (FSR 7.5 GHz).

Fig. 6
Fig. 6

OPO output wavelength as a function of PPLN crystal (domain period 30.34 μm) temperature; fine-tuning curve with a 0.4-mm YAG etalon within the OPO resonator.

Metrics