Abstract

We report on a soliton mode-locked Nd:YAlO3 laser at 930 nm. We used a semiconductor saturable absorber mirror and a Gires–Tournois Interferometer for dispersion compensation to achieve soliton mode locking. The generated pulses were as short as ΔτFWHM=1.9 ps with a spectral bandwidth of Δλ=0.5 nm. The pulses were almost transform limited assuming a sech2 pulse shape. The averaged output power was 410 mW at an absorbed pump power level of 1.76 W. An investigation of the effect of the third-order dispersion of the Gires–Tournois interferometer on the spectra of the mode-locked laser is presented.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG at 946nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B 65, 789–792 (1997).
    [CrossRef]
  2. M. Bode, I. Freitag, A. Tünnermann, and H. Welling, “Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region,” Opt. Lett. 19, 1220–1222 (1997).
    [CrossRef]
  3. R. Hofer, M. Hofer, G. A. Reider, M. Cernusca, and M. H. Ober, “Modelocking of a Nd-fiber laser at 920 nm,” Opt. Commun. 140, 242–244 (1997).
    [CrossRef]
  4. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024–2036 (1995).
    [CrossRef]
  5. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse gen-eration in solid-state-lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [CrossRef]
  6. F. Gires and P. Tournois, “Interférométre utilisable pour la compression d’impulsion lumineuses modulées en fréquence,” C. R. Acad. Sci. 258, 6112–6115 (1964).
  7. B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning, I.Experiment,” Appl. Phys. B 61, 429–437 (1995).
    [CrossRef]
  8. F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burninig.II.Theory,” Appl. Phys. B 61, 569–579 (1995).
    [CrossRef]
  9. Y. Kuwano, “Refractive indices of YAlO3:Nd,” J. Appl. Phys. 49, 4223–4224 (1978).
    [CrossRef]
  10. F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett. 20, 16–18 (1995).
    [CrossRef]
  11. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
    [CrossRef]
  12. P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, and A. J. Schmidt, “Operation of a femtosecond Ti:sapphire solitary laser in the vicinity of zero group-delay dispersion,” Opt. Lett. 18, 54–56 (1993).
    [CrossRef] [PubMed]
  13. F. W. Wise, I. A. Walmsley, and C. L. Tang, “Simultaneous formation of solitons and dispersive waves in a femtosecond ring dye laser,” Opt. Lett. 13, 129–131 (1988).
    [CrossRef]
  14. M. J. P. Dymott and A. J. Ferguson, Pulse duration limitations in a diode-pumped femtosecond Kerr-lens mode-locked Cr:LiSAF laser,” Appl. Phys. B 65, 227–234 (1997).
    [CrossRef]
  15. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipöcs, “Sub-20 fs pulse generation from the mirror disperson controlled Cr:LiSGaF and Cr:LiSAF lasers,” Appl. Phys. B 65, 245–253 (1997).
    [CrossRef]
  16. H. A. Haus, J. D. Moores, and L. E. Nelson, Effect of the third-order dispersion on passive mode locking,” Opt. Lett. 18, 51–53 (1993).
    [CrossRef] [PubMed]

1997

T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG at 946nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B 65, 789–792 (1997).
[CrossRef]

M. Bode, I. Freitag, A. Tünnermann, and H. Welling, “Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region,” Opt. Lett. 19, 1220–1222 (1997).
[CrossRef]

R. Hofer, M. Hofer, G. A. Reider, M. Cernusca, and M. H. Ober, “Modelocking of a Nd-fiber laser at 920 nm,” Opt. Commun. 140, 242–244 (1997).
[CrossRef]

M. J. P. Dymott and A. J. Ferguson, Pulse duration limitations in a diode-pumped femtosecond Kerr-lens mode-locked Cr:LiSAF laser,” Appl. Phys. B 65, 227–234 (1997).
[CrossRef]

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipöcs, “Sub-20 fs pulse generation from the mirror disperson controlled Cr:LiSGaF and Cr:LiSAF lasers,” Appl. Phys. B 65, 245–253 (1997).
[CrossRef]

1996

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse gen-eration in solid-state-lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

1995

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning, I.Experiment,” Appl. Phys. B 61, 429–437 (1995).
[CrossRef]

F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burninig.II.Theory,” Appl. Phys. B 61, 569–579 (1995).
[CrossRef]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024–2036 (1995).
[CrossRef]

F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett. 20, 16–18 (1995).
[CrossRef]

1993

1989

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[CrossRef]

1988

1978

Y. Kuwano, “Refractive indices of YAlO3:Nd,” J. Appl. Phys. 49, 4223–4224 (1978).
[CrossRef]

1964

F. Gires and P. Tournois, “Interférométre utilisable pour la compression d’impulsion lumineuses modulées en fréquence,” C. R. Acad. Sci. 258, 6112–6115 (1964).

Appl. Phys. B

T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG at 946nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B 65, 789–792 (1997).
[CrossRef]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning, I.Experiment,” Appl. Phys. B 61, 429–437 (1995).
[CrossRef]

F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burninig.II.Theory,” Appl. Phys. B 61, 569–579 (1995).
[CrossRef]

M. J. P. Dymott and A. J. Ferguson, Pulse duration limitations in a diode-pumped femtosecond Kerr-lens mode-locked Cr:LiSAF laser,” Appl. Phys. B 65, 227–234 (1997).
[CrossRef]

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipöcs, “Sub-20 fs pulse generation from the mirror disperson controlled Cr:LiSGaF and Cr:LiSAF lasers,” Appl. Phys. B 65, 245–253 (1997).
[CrossRef]

C. R. Acad. Sci.

F. Gires and P. Tournois, “Interférométre utilisable pour la compression d’impulsion lumineuses modulées en fréquence,” C. R. Acad. Sci. 258, 6112–6115 (1964).

IEEE J. Sel. Top. Quantum Electron.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse gen-eration in solid-state-lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

J. Appl. Phys.

Y. Kuwano, “Refractive indices of YAlO3:Nd,” J. Appl. Phys. 49, 4223–4224 (1978).
[CrossRef]

Opt. Commun.

R. Hofer, M. Hofer, G. A. Reider, M. Cernusca, and M. H. Ober, “Modelocking of a Nd-fiber laser at 920 nm,” Opt. Commun. 140, 242–244 (1997).
[CrossRef]

Opt. Eng. (Bellingham)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024–2036 (1995).
[CrossRef]

Opt. Lett.

Phys. Rev. B

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Nd:YAlO3 laser setup with a GTI and a SESAM. L1 =5.7 cm, L2=30 cm, L3=39 cm, and L4=9.2 cm. OC, output coupler.

Fig. 2
Fig. 2

Pulse width and spectrum of the mode-locked Nd:YAlO3 laser at 930 nm at an incident pump power level of 2.38 W. The dashed curves are fits to an ideal sech2 pulse shape.

Fig. 3
Fig. 3

Mode-locked spectra of the Nd:YAlO3 laser for different voltages of the GTI, i.e., different amounts of negative GVD. The autocorrelation traces of the corresponding spectra are depicted in the insets.

Fig. 4
Fig. 4

Pulse width and calculated intracavity power versus voltage of the GTI at an incident pump power level of 1.86 W.

Fig. 5
Fig. 5

Spectra of the pulse of Fig. 2 in the frequency domain (solid curve). Phase of the GTI (dashed curve) including GVD and third-order dispersion and the nonlinear phase shift (dotted line) owing to the Kerr effect in the Nd:YAlO3 crystal.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Φ=D22τ2,
τ=4D22δEp.
δ=2πλ γ 2LgAeff.
Φ=(ω-ω0)2 D22+(ω-ω0)3 D36,

Metrics