Abstract

In this paper the laser properties of Nd3+ ion in yttrium aluminum borate crystal are systematically investigated under continuous-wave end pumping by using a Ti:sapphire tunable laser. Spectral characteristics in the diode-pumping region are analyzed, and no significant excited-state absorption of pumping radiation is predicted. Internal losses are determined to be as low as 0.02 cm-1 and a net-gain cross section of 1.7×10-19 cm2 for the infrared laser line at 1062 nm. Different cavity configurations devoted to demonstrate the possibility of low threshold, high slope efficiency at 1062 nm, and efficient laser generation at 531 nm by self-frequency doubling are investigated for the ordinary and extraordinary beams.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 spectroscopy and laser devices,” J. Opt. Soc. Am. B 3, 140 (1986).
    [CrossRef]
  2. J. T. Lin, “Doubled jeopardy: the blue-green race’s new players,” Laser Optron. (December 1990), p. 35.
  3. J. T. Lin, “Nonlinear crystals for tunable coherent sources,” Opt. Quantum Electron. 22, S283 (1990).
    [CrossRef]
  4. J. Capmany, L. E. Bausá, D. Jaque, J. García Solé, and A. A. Kaminskii, “CW end-pumped Nd+3:LaBGeO5 mini laser for self frequency-doubling,” J. Lumin. 72–74, 816 (1997).
    [CrossRef]
  5. T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681 (1994).
    [CrossRef]
  6. Luo Zundu, Jiang Aidong, Huang Yichuan, and Qiu Min Wang, “Xenon flash lamp pumped self frequency-doubling NYAB pulsed laser,” Chin. Phys. Lett. 6, 440 (1989).
    [CrossRef]
  7. Bao-sheng Lu, Ju Wang, Heng-fu Pan, Min-hua Jiang, En-quan Liu, and Xue-yuan Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052 (1989).
    [CrossRef]
  8. Tingjie Zhao, Zundu Luo, Yichuan Huang, Min Wang Qiu, and Guang Chen, “Experimental study of laser-diode end-pumped Nd:YAl3(BO3)4 laser at 1.06 μm,” Opt. Commun. 109, 115 (1994).
    [CrossRef]
  9. H. Hemmati, “Diode-pumped self-frequency-doubled neodymium yttrium aluminum borate (NYAB) laser,” IEEE J. Quantum Electron. 28, 1169 (1992).
    [CrossRef]
  10. Zhenhua Li, Qikang Fan, Fuzheng Zhou, Jianwei Ma, and Qiang Xue, “Self frequency doubling of a laser diode array pumped Q-switched NYAB laser,” Opt. Eng. 33, 1138 (1994).
    [CrossRef]
  11. D. Jaque, J. Capmany, Z. D. Luo, and J. García Solé, “Optical bands and energy levels of Nd+3 ion in the YAl3(BO3)4 nonlinear crystal,” J. Phys.: Condens. Matter 44, 9715 (1997).
  12. Bao-sheng Lu, Jun Wang, Heng-fu Pan, Min-hua Jing, En-quan Liu, and Yen-yuan Hou, “Laser self-doubling in NYAB,” J. Appl. Phys. 66, 6052 (1989).
    [CrossRef]
  13. T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, and I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1−xAl3(BO3)4 microchip laser,” Opt. Commun. 118, 302 (1995).
    [CrossRef]
  14. D. Findlay and R. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 227 (1966).
    [CrossRef]
  15. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412 (1988).
    [CrossRef]
  16. J. Hawkes and I. Latimer, in Lasers. Theory and Practice (Prentice-Hall, Englewood Cliffs, N.J., 1995).
  17. Heng-fu Pan, Ming-guo Liu, Jing Xue, and Bao-sheng Lu, “The spectra and sensitization of laser self-frequencydoubling NdxY1−xAl3(BO3)4 crystal,” J. Phys.: Condens. Matter 2, 4525 (1990).
  18. S. Ishibashi, H. Itoh, T. Kaino, Y. Yokohama, and K. Kubodera, “New cavity configurations of Nd:MgO:LiNbO3 self-frequency-doubled lasers,” Opt. Commun. 125, 177 (1996).
    [CrossRef]
  19. A. Brenier, “Numerical investigation of the cw end-pumped NYAB and LiNbO3:MgO:Nd self-doubling lasers,” Opt. Commun. 129, 57 (1996).
    [CrossRef]
  20. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]

1997 (2)

D. Jaque, J. Capmany, Z. D. Luo, and J. García Solé, “Optical bands and energy levels of Nd+3 ion in the YAl3(BO3)4 nonlinear crystal,” J. Phys.: Condens. Matter 44, 9715 (1997).

J. Capmany, L. E. Bausá, D. Jaque, J. García Solé, and A. A. Kaminskii, “CW end-pumped Nd+3:LaBGeO5 mini laser for self frequency-doubling,” J. Lumin. 72–74, 816 (1997).
[CrossRef]

1996 (2)

S. Ishibashi, H. Itoh, T. Kaino, Y. Yokohama, and K. Kubodera, “New cavity configurations of Nd:MgO:LiNbO3 self-frequency-doubled lasers,” Opt. Commun. 125, 177 (1996).
[CrossRef]

A. Brenier, “Numerical investigation of the cw end-pumped NYAB and LiNbO3:MgO:Nd self-doubling lasers,” Opt. Commun. 129, 57 (1996).
[CrossRef]

1995 (1)

T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, and I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1−xAl3(BO3)4 microchip laser,” Opt. Commun. 118, 302 (1995).
[CrossRef]

1994 (3)

Tingjie Zhao, Zundu Luo, Yichuan Huang, Min Wang Qiu, and Guang Chen, “Experimental study of laser-diode end-pumped Nd:YAl3(BO3)4 laser at 1.06 μm,” Opt. Commun. 109, 115 (1994).
[CrossRef]

Zhenhua Li, Qikang Fan, Fuzheng Zhou, Jianwei Ma, and Qiang Xue, “Self frequency doubling of a laser diode array pumped Q-switched NYAB laser,” Opt. Eng. 33, 1138 (1994).
[CrossRef]

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681 (1994).
[CrossRef]

1992 (1)

H. Hemmati, “Diode-pumped self-frequency-doubled neodymium yttrium aluminum borate (NYAB) laser,” IEEE J. Quantum Electron. 28, 1169 (1992).
[CrossRef]

1990 (2)

Heng-fu Pan, Ming-guo Liu, Jing Xue, and Bao-sheng Lu, “The spectra and sensitization of laser self-frequencydoubling NdxY1−xAl3(BO3)4 crystal,” J. Phys.: Condens. Matter 2, 4525 (1990).

J. T. Lin, “Nonlinear crystals for tunable coherent sources,” Opt. Quantum Electron. 22, S283 (1990).
[CrossRef]

1989 (3)

Luo Zundu, Jiang Aidong, Huang Yichuan, and Qiu Min Wang, “Xenon flash lamp pumped self frequency-doubling NYAB pulsed laser,” Chin. Phys. Lett. 6, 440 (1989).
[CrossRef]

Bao-sheng Lu, Ju Wang, Heng-fu Pan, Min-hua Jiang, En-quan Liu, and Xue-yuan Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052 (1989).
[CrossRef]

Bao-sheng Lu, Jun Wang, Heng-fu Pan, Min-hua Jing, En-quan Liu, and Yen-yuan Hou, “Laser self-doubling in NYAB,” J. Appl. Phys. 66, 6052 (1989).
[CrossRef]

1988 (1)

1986 (1)

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

1966 (1)

D. Findlay and R. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 227 (1966).
[CrossRef]

Chin. Phys. Lett. (1)

Luo Zundu, Jiang Aidong, Huang Yichuan, and Qiu Min Wang, “Xenon flash lamp pumped self frequency-doubling NYAB pulsed laser,” Chin. Phys. Lett. 6, 440 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Hemmati, “Diode-pumped self-frequency-doubled neodymium yttrium aluminum borate (NYAB) laser,” IEEE J. Quantum Electron. 28, 1169 (1992).
[CrossRef]

J. Appl. Phys. (3)

Bao-sheng Lu, Ju Wang, Heng-fu Pan, Min-hua Jiang, En-quan Liu, and Xue-yuan Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052 (1989).
[CrossRef]

Bao-sheng Lu, Jun Wang, Heng-fu Pan, Min-hua Jing, En-quan Liu, and Yen-yuan Hou, “Laser self-doubling in NYAB,” J. Appl. Phys. 66, 6052 (1989).
[CrossRef]

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

J. Lumin. (1)

J. Capmany, L. E. Bausá, D. Jaque, J. García Solé, and A. A. Kaminskii, “CW end-pumped Nd+3:LaBGeO5 mini laser for self frequency-doubling,” J. Lumin. 72–74, 816 (1997).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys.: Condens. Matter (2)

D. Jaque, J. Capmany, Z. D. Luo, and J. García Solé, “Optical bands and energy levels of Nd+3 ion in the YAl3(BO3)4 nonlinear crystal,” J. Phys.: Condens. Matter 44, 9715 (1997).

Heng-fu Pan, Ming-guo Liu, Jing Xue, and Bao-sheng Lu, “The spectra and sensitization of laser self-frequencydoubling NdxY1−xAl3(BO3)4 crystal,” J. Phys.: Condens. Matter 2, 4525 (1990).

Opt. Commun. (4)

S. Ishibashi, H. Itoh, T. Kaino, Y. Yokohama, and K. Kubodera, “New cavity configurations of Nd:MgO:LiNbO3 self-frequency-doubled lasers,” Opt. Commun. 125, 177 (1996).
[CrossRef]

A. Brenier, “Numerical investigation of the cw end-pumped NYAB and LiNbO3:MgO:Nd self-doubling lasers,” Opt. Commun. 129, 57 (1996).
[CrossRef]

T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, and I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1−xAl3(BO3)4 microchip laser,” Opt. Commun. 118, 302 (1995).
[CrossRef]

Tingjie Zhao, Zundu Luo, Yichuan Huang, Min Wang Qiu, and Guang Chen, “Experimental study of laser-diode end-pumped Nd:YAl3(BO3)4 laser at 1.06 μm,” Opt. Commun. 109, 115 (1994).
[CrossRef]

Opt. Eng. (1)

Zhenhua Li, Qikang Fan, Fuzheng Zhou, Jianwei Ma, and Qiang Xue, “Self frequency doubling of a laser diode array pumped Q-switched NYAB laser,” Opt. Eng. 33, 1138 (1994).
[CrossRef]

Opt. Quantum Electron. (1)

J. T. Lin, “Nonlinear crystals for tunable coherent sources,” Opt. Quantum Electron. 22, S283 (1990).
[CrossRef]

Phys. Lett. (1)

D. Findlay and R. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 227 (1966).
[CrossRef]

Other (2)

J. T. Lin, “Doubled jeopardy: the blue-green race’s new players,” Laser Optron. (December 1990), p. 35.

J. Hawkes and I. Latimer, in Lasers. Theory and Practice (Prentice-Hall, Englewood Cliffs, N.J., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Polarized optical absorption spectra (room temperature) of Nd:YAB in the spectral region for diode pumping.

Fig. 2
Fig. 2

Pumping spectrum of the axial crystal. This spectrum was taken with a 9-cm cavity length, 1% transmissive output coupler, and pumping with 800 mW.

Fig. 3
Fig. 3

Output power versus absorbed pump power curves obtained for two different output couplers: (a) axial crystal, (b) PM crystal.

Fig. 4
Fig. 4

Output power versus absorbed pump power plots for minimizing the pump threshold of both axial (full circles) and PM (open circles) crystals.

Fig. 5
Fig. 5

Output power versus absorbed pump power curve for maximum slope efficiency, with the PM crystal and two different cavity lengths.

Fig. 6
Fig. 6

Green output power as a function of absorbed power for two different output couplers.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σe=σσ cos2 30.7+σπ cos2 59.3+2σσσπ cos 30.7 cos 59.3.
PthPth=δ+12l Ln(1/R)δ+12l Ln(1/R),
R=(r+R1R2)2(1+rR1R2)2
Pth=πhνp(ωp2¯+ωl2¯)(L+T)4στFη,
P2ω(l)=2n0(cπ)-1deff2η3ω3Pω2lh(B, ξ),
P2ω=1.86×10-5Pω2.

Metrics