Abstract

In this paper the laser properties of Nd3+ ion in yttrium aluminum borate crystal are systematically investigated under continuous-wave end pumping by using a Ti:sapphire tunable laser. Spectral characteristics in the diode-pumping region are analyzed, and no significant excited-state absorption of pumping radiation is predicted. Internal losses are determined to be as low as 0.02 cm-1 and a net-gain cross section of 1.7×10-19 cm2 for the infrared laser line at 1062 nm. Different cavity configurations devoted to demonstrate the possibility of low threshold, high slope efficiency at 1062 nm, and efficient laser generation at 531 nm by self-frequency doubling are investigated for the ordinary and extraordinary beams.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription