Abstract

Gaussian-beam propagation in the bio-optical material bacteriorhodopsin is studied with the consideration of the material’s intensity-dependent absorption and refractive-index modulation. The beam-focusing size, focusing position, intensity change in the material, and the dependence of these factors on the incident-beam parameters are simulated.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Esener, J. E. Ford, and S. Hunter, “Optical data storage and retrieval: research directions for the 90’s,” in Optical Technologies for Aerospace Sensing—Critical Reviews of Optical Science and Technology, J. E. Person, ed., Proc. SPIE CR47, 94–130 (1993).
  2. B. Hesselink and M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
    [CrossRef]
  3. A. S. Dvornikov and P. M. Rentzepis, “2-photon 3-dimensional optical storage memory,” Adv. Chem. 240, 161–177 (1994).
    [CrossRef]
  4. R. R. Birge, “Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293–327 (1990).
    [CrossRef] [PubMed]
  5. D. Desterhelt, C. Brauchle, and N. Hampp, “Bacteriorhodopsin: a biological material for information processing,” Q. Rev. Biophys. 24, 425–478 (1991).
    [CrossRef]
  6. R. R. Birge, R. B. Gross, M. B. Masthay, J. A. Stuart, J. R. Tallent, and C.-F. Zhang, “Nonlinear optical properties of bacteriorhodopsin and protein based two-photon three-dimensional memories,” Nonlinear Opt. Princ. Mater. Phenom. Devices 3, 133–147 (1992).
  7. Q. W. Song, C. Zhang, R. B. Gross, and R. R. Birge, “The intensity-dependent refractive index of chemically enhanced bacteriorhodopsin,” Opt. Commun. 112, 296–301 (1994).
    [CrossRef]
  8. Q. W. Song, C. Zhang, R. Gross, and R. Birge, “Optical limiting by chemically enhanced bacteriorhodopsin films,” Opt. Lett. 18, 775–777 (1993).
    [CrossRef] [PubMed]
  9. O. Werner, B. Fischer, A. Lewis, and I. Nebenzahl, “Saturation absorption, wave mixing, and phase conjugation with bacteriorhodopsin,” Opt. Lett. 15, 1117–1119 (1990).
    [CrossRef] [PubMed]
  10. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
  11. O. Werner, B. Fischer, and A. Lewis, “Strong self-defocusing effect and four-wave mixing in bacteriorhodopsin,” Opt. Lett. 17, 241–243 (1992).
    [CrossRef] [PubMed]
  12. D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BRWT and the variant BRD96N,” J. Phys. Chem. 96, 7788–7792 (1992).
    [CrossRef]
  13. R. B. Gross, K. C. Izgi, and R. R. Birge, “Holographic thin films, spatial light modulators and optical associative memories based on bacteriorhodopsin,” in Image Storage and Retrieval Systems, A. I. Jamberdino, ed., Proc. SPIE 1662, 186–196 (1992).
    [CrossRef]

1994 (2)

A. S. Dvornikov and P. M. Rentzepis, “2-photon 3-dimensional optical storage memory,” Adv. Chem. 240, 161–177 (1994).
[CrossRef]

Q. W. Song, C. Zhang, R. B. Gross, and R. R. Birge, “The intensity-dependent refractive index of chemically enhanced bacteriorhodopsin,” Opt. Commun. 112, 296–301 (1994).
[CrossRef]

1993 (3)

S. Esener, J. E. Ford, and S. Hunter, “Optical data storage and retrieval: research directions for the 90’s,” in Optical Technologies for Aerospace Sensing—Critical Reviews of Optical Science and Technology, J. E. Person, ed., Proc. SPIE CR47, 94–130 (1993).

B. Hesselink and M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
[CrossRef]

Q. W. Song, C. Zhang, R. Gross, and R. Birge, “Optical limiting by chemically enhanced bacteriorhodopsin films,” Opt. Lett. 18, 775–777 (1993).
[CrossRef] [PubMed]

1992 (4)

O. Werner, B. Fischer, and A. Lewis, “Strong self-defocusing effect and four-wave mixing in bacteriorhodopsin,” Opt. Lett. 17, 241–243 (1992).
[CrossRef] [PubMed]

R. R. Birge, R. B. Gross, M. B. Masthay, J. A. Stuart, J. R. Tallent, and C.-F. Zhang, “Nonlinear optical properties of bacteriorhodopsin and protein based two-photon three-dimensional memories,” Nonlinear Opt. Princ. Mater. Phenom. Devices 3, 133–147 (1992).

D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BRWT and the variant BRD96N,” J. Phys. Chem. 96, 7788–7792 (1992).
[CrossRef]

R. B. Gross, K. C. Izgi, and R. R. Birge, “Holographic thin films, spatial light modulators and optical associative memories based on bacteriorhodopsin,” in Image Storage and Retrieval Systems, A. I. Jamberdino, ed., Proc. SPIE 1662, 186–196 (1992).
[CrossRef]

1991 (1)

D. Desterhelt, C. Brauchle, and N. Hampp, “Bacteriorhodopsin: a biological material for information processing,” Q. Rev. Biophys. 24, 425–478 (1991).
[CrossRef]

1990 (2)

O. Werner, B. Fischer, A. Lewis, and I. Nebenzahl, “Saturation absorption, wave mixing, and phase conjugation with bacteriorhodopsin,” Opt. Lett. 15, 1117–1119 (1990).
[CrossRef] [PubMed]

R. R. Birge, “Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293–327 (1990).
[CrossRef] [PubMed]

Bashaw, M.

B. Hesselink and M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
[CrossRef]

Birge, R.

Birge, R. R.

Q. W. Song, C. Zhang, R. B. Gross, and R. R. Birge, “The intensity-dependent refractive index of chemically enhanced bacteriorhodopsin,” Opt. Commun. 112, 296–301 (1994).
[CrossRef]

R. B. Gross, K. C. Izgi, and R. R. Birge, “Holographic thin films, spatial light modulators and optical associative memories based on bacteriorhodopsin,” in Image Storage and Retrieval Systems, A. I. Jamberdino, ed., Proc. SPIE 1662, 186–196 (1992).
[CrossRef]

R. R. Birge, R. B. Gross, M. B. Masthay, J. A. Stuart, J. R. Tallent, and C.-F. Zhang, “Nonlinear optical properties of bacteriorhodopsin and protein based two-photon three-dimensional memories,” Nonlinear Opt. Princ. Mater. Phenom. Devices 3, 133–147 (1992).

R. R. Birge, “Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293–327 (1990).
[CrossRef] [PubMed]

Brauchle, C.

D. Desterhelt, C. Brauchle, and N. Hampp, “Bacteriorhodopsin: a biological material for information processing,” Q. Rev. Biophys. 24, 425–478 (1991).
[CrossRef]

Desterhelt, D.

D. Desterhelt, C. Brauchle, and N. Hampp, “Bacteriorhodopsin: a biological material for information processing,” Q. Rev. Biophys. 24, 425–478 (1991).
[CrossRef]

Dvornikov, A. S.

A. S. Dvornikov and P. M. Rentzepis, “2-photon 3-dimensional optical storage memory,” Adv. Chem. 240, 161–177 (1994).
[CrossRef]

Esener, S.

S. Esener, J. E. Ford, and S. Hunter, “Optical data storage and retrieval: research directions for the 90’s,” in Optical Technologies for Aerospace Sensing—Critical Reviews of Optical Science and Technology, J. E. Person, ed., Proc. SPIE CR47, 94–130 (1993).

Fischer, B.

Ford, J. E.

S. Esener, J. E. Ford, and S. Hunter, “Optical data storage and retrieval: research directions for the 90’s,” in Optical Technologies for Aerospace Sensing—Critical Reviews of Optical Science and Technology, J. E. Person, ed., Proc. SPIE CR47, 94–130 (1993).

Gross, R.

Gross, R. B.

Q. W. Song, C. Zhang, R. B. Gross, and R. R. Birge, “The intensity-dependent refractive index of chemically enhanced bacteriorhodopsin,” Opt. Commun. 112, 296–301 (1994).
[CrossRef]

R. R. Birge, R. B. Gross, M. B. Masthay, J. A. Stuart, J. R. Tallent, and C.-F. Zhang, “Nonlinear optical properties of bacteriorhodopsin and protein based two-photon three-dimensional memories,” Nonlinear Opt. Princ. Mater. Phenom. Devices 3, 133–147 (1992).

R. B. Gross, K. C. Izgi, and R. R. Birge, “Holographic thin films, spatial light modulators and optical associative memories based on bacteriorhodopsin,” in Image Storage and Retrieval Systems, A. I. Jamberdino, ed., Proc. SPIE 1662, 186–196 (1992).
[CrossRef]

Hampp, N.

D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BRWT and the variant BRD96N,” J. Phys. Chem. 96, 7788–7792 (1992).
[CrossRef]

D. Desterhelt, C. Brauchle, and N. Hampp, “Bacteriorhodopsin: a biological material for information processing,” Q. Rev. Biophys. 24, 425–478 (1991).
[CrossRef]

Hesselink, B.

B. Hesselink and M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
[CrossRef]

Hunter, S.

S. Esener, J. E. Ford, and S. Hunter, “Optical data storage and retrieval: research directions for the 90’s,” in Optical Technologies for Aerospace Sensing—Critical Reviews of Optical Science and Technology, J. E. Person, ed., Proc. SPIE CR47, 94–130 (1993).

Izgi, K. C.

R. B. Gross, K. C. Izgi, and R. R. Birge, “Holographic thin films, spatial light modulators and optical associative memories based on bacteriorhodopsin,” in Image Storage and Retrieval Systems, A. I. Jamberdino, ed., Proc. SPIE 1662, 186–196 (1992).
[CrossRef]

Lewis, A.

Masthay, M. B.

R. R. Birge, R. B. Gross, M. B. Masthay, J. A. Stuart, J. R. Tallent, and C.-F. Zhang, “Nonlinear optical properties of bacteriorhodopsin and protein based two-photon three-dimensional memories,” Nonlinear Opt. Princ. Mater. Phenom. Devices 3, 133–147 (1992).

Nebenzahl, I.

Rentzepis, P. M.

A. S. Dvornikov and P. M. Rentzepis, “2-photon 3-dimensional optical storage memory,” Adv. Chem. 240, 161–177 (1994).
[CrossRef]

Song, Q. W.

Q. W. Song, C. Zhang, R. B. Gross, and R. R. Birge, “The intensity-dependent refractive index of chemically enhanced bacteriorhodopsin,” Opt. Commun. 112, 296–301 (1994).
[CrossRef]

Q. W. Song, C. Zhang, R. Gross, and R. Birge, “Optical limiting by chemically enhanced bacteriorhodopsin films,” Opt. Lett. 18, 775–777 (1993).
[CrossRef] [PubMed]

Stuart, J. A.

R. R. Birge, R. B. Gross, M. B. Masthay, J. A. Stuart, J. R. Tallent, and C.-F. Zhang, “Nonlinear optical properties of bacteriorhodopsin and protein based two-photon three-dimensional memories,” Nonlinear Opt. Princ. Mater. Phenom. Devices 3, 133–147 (1992).

Tallent, J. R.

R. R. Birge, R. B. Gross, M. B. Masthay, J. A. Stuart, J. R. Tallent, and C.-F. Zhang, “Nonlinear optical properties of bacteriorhodopsin and protein based two-photon three-dimensional memories,” Nonlinear Opt. Princ. Mater. Phenom. Devices 3, 133–147 (1992).

Werner, O.

Zeisel, D.

D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BRWT and the variant BRD96N,” J. Phys. Chem. 96, 7788–7792 (1992).
[CrossRef]

Zhang, C.

Q. W. Song, C. Zhang, R. B. Gross, and R. R. Birge, “The intensity-dependent refractive index of chemically enhanced bacteriorhodopsin,” Opt. Commun. 112, 296–301 (1994).
[CrossRef]

Q. W. Song, C. Zhang, R. Gross, and R. Birge, “Optical limiting by chemically enhanced bacteriorhodopsin films,” Opt. Lett. 18, 775–777 (1993).
[CrossRef] [PubMed]

Zhang, C.-F.

R. R. Birge, R. B. Gross, M. B. Masthay, J. A. Stuart, J. R. Tallent, and C.-F. Zhang, “Nonlinear optical properties of bacteriorhodopsin and protein based two-photon three-dimensional memories,” Nonlinear Opt. Princ. Mater. Phenom. Devices 3, 133–147 (1992).

Adv. Chem. (1)

A. S. Dvornikov and P. M. Rentzepis, “2-photon 3-dimensional optical storage memory,” Adv. Chem. 240, 161–177 (1994).
[CrossRef]

Biochim. Biophys. Acta (1)

R. R. Birge, “Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293–327 (1990).
[CrossRef] [PubMed]

J. Phys. Chem. (1)

D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BRWT and the variant BRD96N,” J. Phys. Chem. 96, 7788–7792 (1992).
[CrossRef]

Nonlinear Opt. Princ. Mater. Phenom. Devices (1)

R. R. Birge, R. B. Gross, M. B. Masthay, J. A. Stuart, J. R. Tallent, and C.-F. Zhang, “Nonlinear optical properties of bacteriorhodopsin and protein based two-photon three-dimensional memories,” Nonlinear Opt. Princ. Mater. Phenom. Devices 3, 133–147 (1992).

Opt. Commun. (1)

Q. W. Song, C. Zhang, R. B. Gross, and R. R. Birge, “The intensity-dependent refractive index of chemically enhanced bacteriorhodopsin,” Opt. Commun. 112, 296–301 (1994).
[CrossRef]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

B. Hesselink and M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
[CrossRef]

Proc. SPIE (2)

S. Esener, J. E. Ford, and S. Hunter, “Optical data storage and retrieval: research directions for the 90’s,” in Optical Technologies for Aerospace Sensing—Critical Reviews of Optical Science and Technology, J. E. Person, ed., Proc. SPIE CR47, 94–130 (1993).

R. B. Gross, K. C. Izgi, and R. R. Birge, “Holographic thin films, spatial light modulators and optical associative memories based on bacteriorhodopsin,” in Image Storage and Retrieval Systems, A. I. Jamberdino, ed., Proc. SPIE 1662, 186–196 (1992).
[CrossRef]

Q. Rev. Biophys. (1)

D. Desterhelt, C. Brauchle, and N. Hampp, “Bacteriorhodopsin: a biological material for information processing,” Q. Rev. Biophys. 24, 425–478 (1991).
[CrossRef]

Other (1)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the Gaussian beam propagation inside an optical medium. Thin solid curves show the situation for a linear optical medium, and thick solid curves indicate the beam propagation for a nonlinear optical medium.

Fig. 2
Fig. 2

Influence of nonlinearity on the waist size of a Gaussian beam for (a) red light of 632.8 nm and (b) green light of 514.5 nm. The relative waist-size change is defined as the actual focused-beam-waist size minus the original incident-beam-waist size.

Fig. 3
Fig. 3

Focusing position as a function of the incident-beam-waist size for (a) red light of 632.8 nm and (b) green light of 514.5 nm. The incident light is supposed to be focused at 360 μm if no nonlinear absorption and phase modulation are present in BR.

Fig. 4
Fig. 4

Actual beam width at the original incident-beam-waist position for (a) wavelength of 632.8 nm and (b) wavelength of 514.5 nm.

Fig. 5
Fig. 5

Difference between the beam-waist position and the highest-intensity position for (a) 632.8 nm wavelength and (b) 514.5 nm wavelength. This shift of the highest-intensity position is caused by the absorption.

Fig. 6
Fig. 6

Profiles of the beam’s intensity distribution for the red light at the front surface of the BR film and positions inside the BR film where we found the actual focus and maximum central intensity. The incident beam power is 1.0 mW, and the waist size is 4 μm.

Fig. 7
Fig. 7

Central intensity by means of BR-film-depth relationship for a number of incident-beam-waist sizes at a beam power of 0.1 mW of green light. Curves from top to bottom correspond to incident waist sizes of 8, 9, 10, 11, and 12 μm.

Fig. 8
Fig. 8

Waist size by means of the laser beam power for 632.8 nm and 514.5 nm for incident waist sizes of 3, 5, 7, and 9 μm. The incident waist position is 360 μm into the BR film.

Fig. 9
Fig. 9

Waist size by means of the laser beam power for 632.8 nm and 514.5 nm for incident waist sizes of 3, 5, 7, and 9 μm. The incident waist position is 100 μm into the BR film.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

E(x, y; z)=E0 W0W(z) exp-ρ2W2(z)×expikz+ik ρ22R(z)-iϕ(z),
W2(z)=W021+z2z02,
z0=πW02n0λ=kW02n02,
R(z)=z1+z0z2,
ϕ(z)=tan-1zz0,
α(I)=Nσ11+2σ2τI/hν1+(σ1+σ2)τI/hν=α0-gI1+I/IS,
α0=8.2cm-1,
IS=4.1mW/cm2,
g=0.83cm/mW.
α0=17.2cm-1,
IS=9.5mW/cm2,
g=1.23cm/mW.
n=n0+Δn(I)=n0+n2I,
Δn(I)=n2I1+IIS.
IS=[Δn]maxn2=8.0×103mW/cm2.
t(x, y; z)=exp-12 α[|E(x, y; z)|2]d+ik0Δn[|E(x, y; z)|2]d,
Eeff(x, y; z)=t(x, y; z)E(x, y; z).
Ueff(p, q; z)=--Eeff(x, y; z)×exp[-i(px+qy)]dxdy,
Eeff(p, q; z)=--Ψeff(p, q; z)×exp[i(px+qy)]dpdq.
H(p, q; d)=expi(p2+q2)d2k=expiλ0d(p2+q2)4πn0,
E(x, y; z+d)=F-1{H(p, q; d)F[Eeff(x, y; z)]}
=F-1{H(p, q; d)F[t(x, y; z)×E(x, y; z)]},
E(x; z)=E0W0W(z) ×expikz-x21W2(z)-ik2R(z)-i ϕ(z)2,

Metrics