Abstract

It is well known that quiet current pumping in semiconductor lasers can give rise to good noise characteristics. This is achieved by use of a driving circuit with a high internal impedance. An analysis of the amplitude noise behavior that occurs with varying the source resistance is carried out. In particular, it is pointed out that the driving resistance also affects the optical noise sources in a region of injection current that is not too far above threshold. Numerical results are presented for a post microcavity laser device.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamamoto, S. Machida, and O. Nilsson, Coherence, Amplification and Quantum Effects in Semiconductor Lasers, Y. Yamamoto, ed. (Wiley, New York, 1991), Chap. 11.
  2. J. Horowicz, H. Heitmann, and Y. Yamamoto, “A microcavity quantum well laser with enhanced coupling of spontaneous emission to the lasing mode,” Appl. Phys. Lett. 61, 393–395 (1992).
    [CrossRef]
  3. Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
    [CrossRef] [PubMed]
  4. Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 657–668 (1991).
    [CrossRef] [PubMed]
  5. A. Bramati, V. Jost, F. Marin, and E. Giacobino, “Quantum noise models for semiconductor lasers: is there a missing noise source?” J. Mod. Opt. 44, 1929–1935 (1997).
    [CrossRef]
  6. J. L. Vey and W. Elsässer, “Amplitude noise squeezing with vertical cavity semiconductor lasers,” in Proceedings of the European Quantum Electronics Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), p. 218.
  7. J. L. Vey and P. Gallion, “Semiclassical model of semiconductor laser noise and amplitude noise squeezing—Part I and II,” IEEE J. Quantum Electron. 33, 2097–2110 (1997).
    [CrossRef]
  8. G. P. Bava and P. Debernardi, “Spontaneous emission in semiconductor microcavity post lasers,” IEE Proc.-J: Optoelectron. (to be published).
  9. H. Haug, “Quantum mechanical theory of fluctuations and relaxation in semiconductor lasers,” Z. Phys. 200, 57–68 (1967).
    [CrossRef]

1997 (2)

A. Bramati, V. Jost, F. Marin, and E. Giacobino, “Quantum noise models for semiconductor lasers: is there a missing noise source?” J. Mod. Opt. 44, 1929–1935 (1997).
[CrossRef]

J. L. Vey and P. Gallion, “Semiclassical model of semiconductor laser noise and amplitude noise squeezing—Part I and II,” IEEE J. Quantum Electron. 33, 2097–2110 (1997).
[CrossRef]

1992 (1)

J. Horowicz, H. Heitmann, and Y. Yamamoto, “A microcavity quantum well laser with enhanced coupling of spontaneous emission to the lasing mode,” Appl. Phys. Lett. 61, 393–395 (1992).
[CrossRef]

1991 (1)

Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 657–668 (1991).
[CrossRef] [PubMed]

1986 (1)

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
[CrossRef] [PubMed]

1967 (1)

H. Haug, “Quantum mechanical theory of fluctuations and relaxation in semiconductor lasers,” Z. Phys. 200, 57–68 (1967).
[CrossRef]

Björk, G.

Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 657–668 (1991).
[CrossRef] [PubMed]

Bramati, A.

A. Bramati, V. Jost, F. Marin, and E. Giacobino, “Quantum noise models for semiconductor lasers: is there a missing noise source?” J. Mod. Opt. 44, 1929–1935 (1997).
[CrossRef]

Gallion, P.

J. L. Vey and P. Gallion, “Semiclassical model of semiconductor laser noise and amplitude noise squeezing—Part I and II,” IEEE J. Quantum Electron. 33, 2097–2110 (1997).
[CrossRef]

Giacobino, E.

A. Bramati, V. Jost, F. Marin, and E. Giacobino, “Quantum noise models for semiconductor lasers: is there a missing noise source?” J. Mod. Opt. 44, 1929–1935 (1997).
[CrossRef]

Haug, H.

H. Haug, “Quantum mechanical theory of fluctuations and relaxation in semiconductor lasers,” Z. Phys. 200, 57–68 (1967).
[CrossRef]

Heitmann, H.

J. Horowicz, H. Heitmann, and Y. Yamamoto, “A microcavity quantum well laser with enhanced coupling of spontaneous emission to the lasing mode,” Appl. Phys. Lett. 61, 393–395 (1992).
[CrossRef]

Horowicz, J.

J. Horowicz, H. Heitmann, and Y. Yamamoto, “A microcavity quantum well laser with enhanced coupling of spontaneous emission to the lasing mode,” Appl. Phys. Lett. 61, 393–395 (1992).
[CrossRef]

Jost, V.

A. Bramati, V. Jost, F. Marin, and E. Giacobino, “Quantum noise models for semiconductor lasers: is there a missing noise source?” J. Mod. Opt. 44, 1929–1935 (1997).
[CrossRef]

Machida, S.

Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 657–668 (1991).
[CrossRef] [PubMed]

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
[CrossRef] [PubMed]

Marin, F.

A. Bramati, V. Jost, F. Marin, and E. Giacobino, “Quantum noise models for semiconductor lasers: is there a missing noise source?” J. Mod. Opt. 44, 1929–1935 (1997).
[CrossRef]

Nilsson, O.

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
[CrossRef] [PubMed]

Vey, J. L.

J. L. Vey and P. Gallion, “Semiclassical model of semiconductor laser noise and amplitude noise squeezing—Part I and II,” IEEE J. Quantum Electron. 33, 2097–2110 (1997).
[CrossRef]

Yamamoto, Y.

J. Horowicz, H. Heitmann, and Y. Yamamoto, “A microcavity quantum well laser with enhanced coupling of spontaneous emission to the lasing mode,” Appl. Phys. Lett. 61, 393–395 (1992).
[CrossRef]

Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 657–668 (1991).
[CrossRef] [PubMed]

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. Horowicz, H. Heitmann, and Y. Yamamoto, “A microcavity quantum well laser with enhanced coupling of spontaneous emission to the lasing mode,” Appl. Phys. Lett. 61, 393–395 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. L. Vey and P. Gallion, “Semiclassical model of semiconductor laser noise and amplitude noise squeezing—Part I and II,” IEEE J. Quantum Electron. 33, 2097–2110 (1997).
[CrossRef]

J. Mod. Opt. (1)

A. Bramati, V. Jost, F. Marin, and E. Giacobino, “Quantum noise models for semiconductor lasers: is there a missing noise source?” J. Mod. Opt. 44, 1929–1935 (1997).
[CrossRef]

Phys. Rev. A (2)

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
[CrossRef] [PubMed]

Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 657–668 (1991).
[CrossRef] [PubMed]

Z. Phys. (1)

H. Haug, “Quantum mechanical theory of fluctuations and relaxation in semiconductor lasers,” Z. Phys. 200, 57–68 (1967).
[CrossRef]

Other (3)

Y. Yamamoto, S. Machida, and O. Nilsson, Coherence, Amplification and Quantum Effects in Semiconductor Lasers, Y. Yamamoto, ed. (Wiley, New York, 1991), Chap. 11.

G. P. Bava and P. Debernardi, “Spontaneous emission in semiconductor microcavity post lasers,” IEE Proc.-J: Optoelectron. (to be published).

J. L. Vey and W. Elsässer, “Amplitude noise squeezing with vertical cavity semiconductor lasers,” in Proceedings of the European Quantum Electronics Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), p. 218.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic representation of a microcavity air-post laser.

Fig. 2
Fig. 2

Circuit representation of the first term of Eq. (7); Ip is the thermal noise generator related to Rs.

Fig. 3
Fig. 3

Differential device resistance versus current: solid, dashed and dotted–dashed curves correspond, respectively, to the post diameter of 1, 2, and 3 μm.

Fig. 4
Fig. 4

β factor (left) and total spontaneous emission (right) versus carrier density for different post diameters (same as in Fig. 3).

Fig. 5
Fig. 5

Modal gain G (left) and its derivative with respect to carrier density (right) versus carrier density for different post diameters (same as in Fig. 3).

Fig. 6
Fig. 6

Microlaser static working characteristics versus injected current for three different diameters (same as in Fig. 3).

Fig. 7
Fig. 7

Zero-frequency normalized photon output noise spectra versus injected current for three different post diameters for two values of Rs (solid curves, Rs=1 MΩ, dashed curves, Rs=100 Ω). On the right-hand side the effect of optical losses is accounted for.

Fig. 8
Fig. 8

Different contributions to zero-frequency photon-output noise spectra versus injected current for the 2-μm post microlaser; the left-hand side refers to Rs=100 Ω, the right-hand side to Rs=1 MΩ. Solid curve, total noise; short-dashed curve, pump noise due to Rs; long-dashed curve, noise due to Rnr; dotted–dashed curves, noise due to vacuum field fluctuations; dotted curve, noise due to spontaneous and stimulated emission.

Fig. 9
Fig. 9

The same as Fig. 8 but versus frequency at I=5 Ith.

Fig. 10
Fig. 10

Zero-frequency photon-output noise spectra of the 1-μm post microlaser for different driving-circuit characteristics versus injected current (the left-hand value corresponds to threshold). Solid curves refer to the complete model of Eq. (10); dashed curves are given by Eq. (11).

Tables (1)

Tables Icon

Table 1 Relevant Parameters of the Post Microlasers for Different Device Diameters

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

dNdt=Iq-Rnr-Rsp-nG+LN,
dndt=βRsp+n(G-γ)+Ln+Lv,
Rsp=2πikgi2nck(1-nvk)δ(ωcvk-ωi),
gi2=(ωcvk)22Ciωi 1Va Va|EiMcvk|2dV,
Rsp,l=kgl2nck(1-nvk) 2γk(ωcvk-ωl)2+γk2,
G=kgl2(nck-nvk) 2γk(ωcvk-ωl)2+γk2.
LN(t)LN(s)=[(2βRsp-G)n+Rsp+Rnr+P]δ(t-s)=SNδ(t-s),
Ln(t)Ln(s)=[(2βRsp-G)n+βRsp+(γ-γo)n]δ(t-s)=Snδ(t-s),
Ln(t)LN(s)=-[(2βRsp-G)n+βRsp]δ(t-s)=Sn,Nδ(t-s),
Lv(t)Lv(s)=γonδ(t-s)=Svδ(t-s),
ddt ΔN=A1ΔN+A2Δn+LN,
ddt Δn=A3ΔN+A4Δn+Ln+Lv,
A1=-(Gn+Rsp+Rnr)=-1τ,
A2=-G,
A3=Gn+(βRsp),
A4=G-γ.
A1A1(1+Rd/Rs),
C=q(ΔN/ΔV),
C=q2 dNdEfc=q2 N¯KT [1-exp(-N/N¯)],
nout=γon-Rof;
NPFS=noisespectrumofnout2nout
NPFS(ω)
=(γon{[ω2-(A1A4-A2A3)2]2+ω2(A1+A4)2})-1×(γo2[A32SN+(ω2+A12)Sn-2A1A3Sn,N]+{[ω2-(A1A4-A2A3-A1γo/Ro)]2+ω2(A1+A4-γo/Ro)2}RoSv).
NPFS(0)=Ro1-γoγ+γoγ (1-Ro)2+γoγ2 1n 2nγo βRsp(ρ+r)2+(1-β)Rsp+Rnr+P+2 γoγ (ρ+r)(1-Ro),
n(Rsp+Rnr)/γ,

Metrics