Abstract

For periodically poled LiNbO3 with a 3.3-μm domain period we observed backward second-harmonic generation using nanosecond laser pulses. We measured phase-matching spectra at the 16th, 17th, 18th, 19th, and 20th orders of the spatial grating. The peak wavelength of each order is in good agreement with the theoretical prediction. The quadratic dependence of the backward second-harmonic output pulse energy on the pump pulse energy was confirmed in our experiments. The quadratic dependence of the conversion efficiency on the domain length was also confirmed. Using nanosecond pulses, we achieved a maximum conversion efficiency of 0.296% for the 16th-order grating.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [CrossRef]
  2. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  3. P. St. J. Russell, “Theoretical study of parametric frequency and wavefront conversion in nonlinear holograms,” IEEE J. Quantum Electron. 27, 830–835 (1991).
    [CrossRef]
  4. Y. J. Ding and J. B. Khurgin, “Second-harmonic generation based on quasi-phase matching: a novel configuration,” Opt. Lett. 21, 1445–1447 (1996).
    [CrossRef] [PubMed]
  5. R. Normandin, R. L. Williams, and F. Chatenoud, “Enhanced surface emitting waveguides for visible, monolithic semiconductor laser sources,” Electron. Lett. 26, 2088–2089 (1990); D. Vakhshoori, R. J. Fischer, M. Hong, D. L. Sivco, G. J. Zydzic, and G. N. S. Chu, “Blue-green surface-emitting second-harmonic generations on (111) GaAs,” Appl. Phys. Lett. 59, 896–898 (1991).
    [CrossRef]
  6. J. B. Khurgin, “Second-order nonlinear effects in asymmetric quantum-well structures,” Phys. Rev. B 38, 4056–4066 (1988); S. Li and J. B. Khurgin, “Second-order nonlinear optical susceptibility in the p-doped asymmetric quantum wells,” Appl. Phys. Lett. 62, 1727–1729 (1993); Y. J. Ding, S. J. Lee, and J. B. Khurgin, “Cavity-enhanced and quasi-phase-matched optical frequency doublers in surface-emitting geometry,” J. Opt. Soc. Am. BJOBPDE 12, 1586–1594 (1996).
    [CrossRef]
  7. S. Janz, F. Chatenoud, and R. Normandin, “Quasi-phase-matched second-harmonic generation for asymmetric coupled quantum wells,” Opt. Lett. 19, 622–624 (1994).
    [CrossRef] [PubMed]
  8. J. U. Kang, Y. J. Ding, W. K. Burns, and J. S. Melinger, “Backward second-harmonic generation in periodically poled bulk LiNbO3,” Opt. Lett. 22, 862–864 (1997).
    [CrossRef] [PubMed]
  9. Y. J. Ding and J. B. Khurgin, “Backward optical parametric oscillators and amplifiers,” IEEE J. Quantum Electron. 32, 1574–1582 (1996).
    [CrossRef]
  10. L. Goldberg, R. W. McElhanon, and W. K. Burns, “Blue light generation in bulk periodically field poled LiNbO3,” Electron. Lett. 31, 1576–1577 (1995).
    [CrossRef]
  11. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, New York, 1995), pp. 119–121.
  12. Y. J. Ding, J. U. Kang, and J. B. Khurgin, IEEE J. Quantum Electron. (to be published).

1997 (1)

1996 (2)

Y. J. Ding and J. B. Khurgin, “Backward optical parametric oscillators and amplifiers,” IEEE J. Quantum Electron. 32, 1574–1582 (1996).
[CrossRef]

Y. J. Ding and J. B. Khurgin, “Second-harmonic generation based on quasi-phase matching: a novel configuration,” Opt. Lett. 21, 1445–1447 (1996).
[CrossRef] [PubMed]

1995 (1)

L. Goldberg, R. W. McElhanon, and W. K. Burns, “Blue light generation in bulk periodically field poled LiNbO3,” Electron. Lett. 31, 1576–1577 (1995).
[CrossRef]

1994 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

1991 (1)

P. St. J. Russell, “Theoretical study of parametric frequency and wavefront conversion in nonlinear holograms,” IEEE J. Quantum Electron. 27, 830–835 (1991).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Burns, W. K.

J. U. Kang, Y. J. Ding, W. K. Burns, and J. S. Melinger, “Backward second-harmonic generation in periodically poled bulk LiNbO3,” Opt. Lett. 22, 862–864 (1997).
[CrossRef] [PubMed]

L. Goldberg, R. W. McElhanon, and W. K. Burns, “Blue light generation in bulk periodically field poled LiNbO3,” Electron. Lett. 31, 1576–1577 (1995).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Chatenoud, F.

Ding, Y. J.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Goldberg, L.

L. Goldberg, R. W. McElhanon, and W. K. Burns, “Blue light generation in bulk periodically field poled LiNbO3,” Electron. Lett. 31, 1576–1577 (1995).
[CrossRef]

Janz, S.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Kang, J. U.

Khurgin, J. B.

Y. J. Ding and J. B. Khurgin, “Second-harmonic generation based on quasi-phase matching: a novel configuration,” Opt. Lett. 21, 1445–1447 (1996).
[CrossRef] [PubMed]

Y. J. Ding and J. B. Khurgin, “Backward optical parametric oscillators and amplifiers,” IEEE J. Quantum Electron. 32, 1574–1582 (1996).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

McElhanon, R. W.

L. Goldberg, R. W. McElhanon, and W. K. Burns, “Blue light generation in bulk periodically field poled LiNbO3,” Electron. Lett. 31, 1576–1577 (1995).
[CrossRef]

Melinger, J. S.

Normandin, R.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Russell, P. St. J.

P. St. J. Russell, “Theoretical study of parametric frequency and wavefront conversion in nonlinear holograms,” IEEE J. Quantum Electron. 27, 830–835 (1991).
[CrossRef]

Electron. Lett. (1)

L. Goldberg, R. W. McElhanon, and W. K. Burns, “Blue light generation in bulk periodically field poled LiNbO3,” Electron. Lett. 31, 1576–1577 (1995).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

P. St. J. Russell, “Theoretical study of parametric frequency and wavefront conversion in nonlinear holograms,” IEEE J. Quantum Electron. 27, 830–835 (1991).
[CrossRef]

Y. J. Ding and J. B. Khurgin, “Backward optical parametric oscillators and amplifiers,” IEEE J. Quantum Electron. 32, 1574–1582 (1996).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Other (4)

R. Normandin, R. L. Williams, and F. Chatenoud, “Enhanced surface emitting waveguides for visible, monolithic semiconductor laser sources,” Electron. Lett. 26, 2088–2089 (1990); D. Vakhshoori, R. J. Fischer, M. Hong, D. L. Sivco, G. J. Zydzic, and G. N. S. Chu, “Blue-green surface-emitting second-harmonic generations on (111) GaAs,” Appl. Phys. Lett. 59, 896–898 (1991).
[CrossRef]

J. B. Khurgin, “Second-order nonlinear effects in asymmetric quantum-well structures,” Phys. Rev. B 38, 4056–4066 (1988); S. Li and J. B. Khurgin, “Second-order nonlinear optical susceptibility in the p-doped asymmetric quantum wells,” Appl. Phys. Lett. 62, 1727–1729 (1993); Y. J. Ding, S. J. Lee, and J. B. Khurgin, “Cavity-enhanced and quasi-phase-matched optical frequency doublers in surface-emitting geometry,” J. Opt. Soc. Am. BJOBPDE 12, 1586–1594 (1996).
[CrossRef]

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, New York, 1995), pp. 119–121.

Y. J. Ding, J. U. Kang, and J. B. Khurgin, IEEE J. Quantum Electron. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Four configurations of SHG based on quasi-phase matching: (i) forward, (ii) backward in the presence of one pump beam, (iii) backward in the presence of the two counterpropagating pump beams (counterpropagating), and (iv) surface emitting.

Fig. 2
Fig. 2

Our experimental setup for observation of backward SHG.

Fig. 3
Fig. 3

Propagation configuration for backward SHG in periodically poled LiNbO3. All the beams are polarized along the optic axis of the LiNbO3 crystal.

Fig. 4
Fig. 4

Measurement of the phase-matching spectrum approximately normalized by the square of the pump intensity for the length of the PPLN sample of ∼5.5 mm.

Fig. 5
Fig. 5

FWHM of each phase-matching peak versus grating order determined from Fig. 4.

Fig. 6
Fig. 6

For the 16th order, backward SH energy per pulse was measusred versus pump intensity (filled circles). The dotted curve corresponds to the theoretical result obtained based on Eq. (3).

Fig. 7
Fig. 7

Conversion efficiencies measured and calculated based on Eq. (4) versus pump intensity for the 16th order (filled diamonds), 17th order (open squares and dot–dash line), 18th order (filled squares and long-dashed line), 19th order (open circles and dotted line), and 20th order (filled circles and solid line). The length of the PPLN sample for these measurements is ∼4 mm.

Fig. 8
Fig. 8

Conversion efficiency measured versus domain length for the 16th order at the pump intensity of 325 MW/cm2 (pump wavelength is ∼1768.1 nm; filled circles) and the 18th order at the pump intensity of 415 MW/cm2 (pump wavelength is ∼1569.2 nm; filled diamonds). The short- and long-dashed curves correspond to the respective theoretical results based on Eq. (4).

Tables (1)

Tables Icon

Table 1 Peak Wavelengths for all Five Phase-Matching Peaksa

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k2ω+2kω=2πm/Λ,
Δλ01.3915λ02πL[n(λ0)+n(λ0/2)].
J2ω=2η0deff2Ip2L2τAω4πn(λ0/2)n2(λ0)[n(λ0)+n(λ0/2)]2Λ2,
η=2η0d332IpL24πn(λ0/2)n2(λ0)[n(λ0)+n(λ0/2)]2Λ2.
ηnηs=(Ip)n(Ip)s LnLs2 n(λ0)+n(λ0/2)2πτsc Ls,
ηIpL2Λ2.

Metrics