Abstract

Photoinduced coloration and the holographic grating recording associated with it are experimentally studied in Mn-doped yttrium orthoaluminate (Mn:YAlO3). High diffraction efficiency is demonstrated in visible and in infrared light. The diffraction efficiency at 514.5 nm exceeds 50%. The strong energy exchange between the writing beams observed in a two-wave mixing experiment suggests that diffraction in Mn:YAlO3 is due to mainly nonlocal holographic effect and an electro-optical effect. Mn:YAlO3 is shown to be a promising material for holographic recording and optical storage.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Loutts, M. Warren, L. Taylor, H. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. Lett. 57, 3706–3709 (1988).
  2. S. Geschwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, “Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3,” Phys. Rev. 126, 1684–1686 (1962).
    [CrossRef]
  3. K. Peterman and G. Huber, “Broad band fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31 and 32, 71–77 (1994).
  4. U. Hömmerich, H. Eilers, W. M. Yen, and H. R. Verdun, “The optical center MnO43− in Y2SiO5:Mn, X (X=Al, Ca),” Chem. Phys. Lett. 213, 163–167 (1993).
    [CrossRef]
  5. A. Brener, A. Suchocki, C. Pedrini, G. Boulon, and C. Madej, “Spectroscopy of Mn4+-doped Ca-substituted gadolinium gallium garnet,” Phys. Rev. B 46, 3219–3227 (1992).
    [CrossRef]
  6. All ion concentrations in this paper are given according to their nominal values in the charge.
  7. Simple modeling shows that formula (1) adequately describes the initial stage of Mn5+ population kinetics also in the case of the two-photon excitation discussed in Section 4.
  8. N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
    [CrossRef]
  9. S. A. Basun, S. P. Feofilov, and A. A. Kaplyanskii, “Photoelectric studies of two-step photoionization of Ti3+ ions in oxide crystals,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1992), pp. 333–335.
  10. S. A. Basun, S. P. Feofilov, A. A. Kaplyanskii, T. Danger, G. Huber, and K. Peterman, “Photoionization and excited state absorption in YAlO3:Ti crystals,” in Advanced Solid-State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 339–342.
  11. P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. B. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectr. 59, 633 (1993).
    [CrossRef]
  12. V. Vinetskii and N. Kukhtarev, “Anomalous photoelectric field and energy transfer during holographic grating recording in semiconductors,” Sov. Tech. Phys. Lett. 1, 84–87 (1975).
  13. S. Geller and E. A. Wood, “Crystallographic studies of perovskite-like compounds. I. Rare earth orthoferrites and YFeO3, YCrO3, YAlO3,” Acta Crystallogr. 9, 563–568 (1956).
    [CrossRef]
  14. R. Diehl and G. Brandt, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
    [CrossRef]
  15. Descriptions of the shift in BaTiO3 are given in any textbook covering ferroelectricity, for example, C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986), p. 377; A. R. West, Solid State Chemistry and Its Application (Wiley, Chichester, UK, 1984), pp. 541–544.

1994 (1)

K. Peterman and G. Huber, “Broad band fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31 and 32, 71–77 (1994).

1993 (2)

U. Hömmerich, H. Eilers, W. M. Yen, and H. R. Verdun, “The optical center MnO43− in Y2SiO5:Mn, X (X=Al, Ca),” Chem. Phys. Lett. 213, 163–167 (1993).
[CrossRef]

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. B. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectr. 59, 633 (1993).
[CrossRef]

1992 (1)

A. Brener, A. Suchocki, C. Pedrini, G. Boulon, and C. Madej, “Spectroscopy of Mn4+-doped Ca-substituted gadolinium gallium garnet,” Phys. Rev. B 46, 3219–3227 (1992).
[CrossRef]

1988 (1)

G. B. Loutts, M. Warren, L. Taylor, H. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. Lett. 57, 3706–3709 (1988).

1979 (1)

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

1975 (2)

V. Vinetskii and N. Kukhtarev, “Anomalous photoelectric field and energy transfer during holographic grating recording in semiconductors,” Sov. Tech. Phys. Lett. 1, 84–87 (1975).

R. Diehl and G. Brandt, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
[CrossRef]

1962 (1)

S. Geschwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, “Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3,” Phys. Rev. 126, 1684–1686 (1962).
[CrossRef]

1956 (1)

S. Geller and E. A. Wood, “Crystallographic studies of perovskite-like compounds. I. Rare earth orthoferrites and YFeO3, YCrO3, YAlO3,” Acta Crystallogr. 9, 563–568 (1956).
[CrossRef]

Boulon, G.

A. Brener, A. Suchocki, C. Pedrini, G. Boulon, and C. Madej, “Spectroscopy of Mn4+-doped Ca-substituted gadolinium gallium garnet,” Phys. Rev. B 46, 3219–3227 (1992).
[CrossRef]

Brandt, G.

R. Diehl and G. Brandt, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
[CrossRef]

Brener, A.

A. Brener, A. Suchocki, C. Pedrini, G. Boulon, and C. Madej, “Spectroscopy of Mn4+-doped Ca-substituted gadolinium gallium garnet,” Phys. Rev. B 46, 3219–3227 (1992).
[CrossRef]

Caulfield, H. J.

G. B. Loutts, M. Warren, L. Taylor, H. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. Lett. 57, 3706–3709 (1988).

Curley, M.

G. B. Loutts, M. Warren, L. Taylor, H. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. Lett. 57, 3706–3709 (1988).

Diehl, R.

R. Diehl and G. Brandt, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
[CrossRef]

Dorenbos, P.

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. B. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectr. 59, 633 (1993).
[CrossRef]

Eilers, H.

U. Hömmerich, H. Eilers, W. M. Yen, and H. R. Verdun, “The optical center MnO43− in Y2SiO5:Mn, X (X=Al, Ca),” Chem. Phys. Lett. 213, 163–167 (1993).
[CrossRef]

Fyodorov, A. A.

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. B. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectr. 59, 633 (1993).
[CrossRef]

Geller, S.

S. Geller and E. A. Wood, “Crystallographic studies of perovskite-like compounds. I. Rare earth orthoferrites and YFeO3, YCrO3, YAlO3,” Acta Crystallogr. 9, 563–568 (1956).
[CrossRef]

Geschwind, S.

S. Geschwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, “Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3,” Phys. Rev. 126, 1684–1686 (1962).
[CrossRef]

Hömmerich, U.

U. Hömmerich, H. Eilers, W. M. Yen, and H. R. Verdun, “The optical center MnO43− in Y2SiO5:Mn, X (X=Al, Ca),” Chem. Phys. Lett. 213, 163–167 (1993).
[CrossRef]

Huber, G.

K. Peterman and G. Huber, “Broad band fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31 and 32, 71–77 (1994).

Kisliuk, P.

S. Geschwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, “Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3,” Phys. Rev. 126, 1684–1686 (1962).
[CrossRef]

Klein, M. P.

S. Geschwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, “Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3,” Phys. Rev. 126, 1684–1686 (1962).
[CrossRef]

Korzhik, M. V.

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. B. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectr. 59, 633 (1993).
[CrossRef]

Kudryavtseva, A. P.

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. B. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectr. 59, 633 (1993).
[CrossRef]

Kukhtarev, N.

G. B. Loutts, M. Warren, L. Taylor, H. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. Lett. 57, 3706–3709 (1988).

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

V. Vinetskii and N. Kukhtarev, “Anomalous photoelectric field and energy transfer during holographic grating recording in semiconductors,” Sov. Tech. Phys. Lett. 1, 84–87 (1975).

Loutts, G. B.

G. B. Loutts, M. Warren, L. Taylor, H. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. Lett. 57, 3706–3709 (1988).

Lyubetskii, S. V.

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. B. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectr. 59, 633 (1993).
[CrossRef]

Madej, C.

A. Brener, A. Suchocki, C. Pedrini, G. Boulon, and C. Madej, “Spectroscopy of Mn4+-doped Ca-substituted gadolinium gallium garnet,” Phys. Rev. B 46, 3219–3227 (1992).
[CrossRef]

Markov, V.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Miller, G.

G. B. Loutts, M. Warren, L. Taylor, H. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. Lett. 57, 3706–3709 (1988).

Minkov, B. I.

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. B. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectr. 59, 633 (1993).
[CrossRef]

Noginov, M. A.

G. B. Loutts, M. Warren, L. Taylor, H. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. Lett. 57, 3706–3709 (1988).

Noginova, N.

G. B. Loutts, M. Warren, L. Taylor, H. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. Lett. 57, 3706–3709 (1988).

Odulov, S.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Pavlenko, V. B.

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. B. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectr. 59, 633 (1993).
[CrossRef]

Pedrini, C.

A. Brener, A. Suchocki, C. Pedrini, G. Boulon, and C. Madej, “Spectroscopy of Mn4+-doped Ca-substituted gadolinium gallium garnet,” Phys. Rev. B 46, 3219–3227 (1992).
[CrossRef]

Peterman, K.

K. Peterman and G. Huber, “Broad band fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31 and 32, 71–77 (1994).

Remeika, J. P.

S. Geschwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, “Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3,” Phys. Rev. 126, 1684–1686 (1962).
[CrossRef]

Ries, H.

G. B. Loutts, M. Warren, L. Taylor, H. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. Lett. 57, 3706–3709 (1988).

Soskin, M.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Suchocki, A.

A. Brener, A. Suchocki, C. Pedrini, G. Boulon, and C. Madej, “Spectroscopy of Mn4+-doped Ca-substituted gadolinium gallium garnet,” Phys. Rev. B 46, 3219–3227 (1992).
[CrossRef]

Taylor, L.

G. B. Loutts, M. Warren, L. Taylor, H. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. Lett. 57, 3706–3709 (1988).

Venkateswarlu, P.

G. B. Loutts, M. Warren, L. Taylor, H. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. Lett. 57, 3706–3709 (1988).

Verdun, H. R.

U. Hömmerich, H. Eilers, W. M. Yen, and H. R. Verdun, “The optical center MnO43− in Y2SiO5:Mn, X (X=Al, Ca),” Chem. Phys. Lett. 213, 163–167 (1993).
[CrossRef]

Vinetskii, V.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

V. Vinetskii and N. Kukhtarev, “Anomalous photoelectric field and energy transfer during holographic grating recording in semiconductors,” Sov. Tech. Phys. Lett. 1, 84–87 (1975).

Warren, M.

G. B. Loutts, M. Warren, L. Taylor, H. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. Lett. 57, 3706–3709 (1988).

Wood, D. L.

S. Geschwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, “Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3,” Phys. Rev. 126, 1684–1686 (1962).
[CrossRef]

Wood, E. A.

S. Geller and E. A. Wood, “Crystallographic studies of perovskite-like compounds. I. Rare earth orthoferrites and YFeO3, YCrO3, YAlO3,” Acta Crystallogr. 9, 563–568 (1956).
[CrossRef]

Yen, W. M.

U. Hömmerich, H. Eilers, W. M. Yen, and H. R. Verdun, “The optical center MnO43− in Y2SiO5:Mn, X (X=Al, Ca),” Chem. Phys. Lett. 213, 163–167 (1993).
[CrossRef]

Acta Crystallogr. (1)

S. Geller and E. A. Wood, “Crystallographic studies of perovskite-like compounds. I. Rare earth orthoferrites and YFeO3, YCrO3, YAlO3,” Acta Crystallogr. 9, 563–568 (1956).
[CrossRef]

Chem. Phys. Lett. (1)

U. Hömmerich, H. Eilers, W. M. Yen, and H. R. Verdun, “The optical center MnO43− in Y2SiO5:Mn, X (X=Al, Ca),” Chem. Phys. Lett. 213, 163–167 (1993).
[CrossRef]

Ferroelectrics (1)

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

J. Appl. Spectr. (1)

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. B. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectr. 59, 633 (1993).
[CrossRef]

J. Lumin. (1)

K. Peterman and G. Huber, “Broad band fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31 and 32, 71–77 (1994).

Mater. Res. Bull. (1)

R. Diehl and G. Brandt, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
[CrossRef]

Phys. Rev. (1)

S. Geschwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, “Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3,” Phys. Rev. 126, 1684–1686 (1962).
[CrossRef]

Phys. Rev. B (1)

A. Brener, A. Suchocki, C. Pedrini, G. Boulon, and C. Madej, “Spectroscopy of Mn4+-doped Ca-substituted gadolinium gallium garnet,” Phys. Rev. B 46, 3219–3227 (1992).
[CrossRef]

Phys. Rev. Lett. (1)

G. B. Loutts, M. Warren, L. Taylor, H. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. Lett. 57, 3706–3709 (1988).

Sov. Tech. Phys. Lett. (1)

V. Vinetskii and N. Kukhtarev, “Anomalous photoelectric field and energy transfer during holographic grating recording in semiconductors,” Sov. Tech. Phys. Lett. 1, 84–87 (1975).

Other (5)

Descriptions of the shift in BaTiO3 are given in any textbook covering ferroelectricity, for example, C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986), p. 377; A. R. West, Solid State Chemistry and Its Application (Wiley, Chichester, UK, 1984), pp. 541–544.

S. A. Basun, S. P. Feofilov, and A. A. Kaplyanskii, “Photoelectric studies of two-step photoionization of Ti3+ ions in oxide crystals,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1992), pp. 333–335.

S. A. Basun, S. P. Feofilov, A. A. Kaplyanskii, T. Danger, G. Huber, and K. Peterman, “Photoionization and excited state absorption in YAlO3:Ti crystals,” in Advanced Solid-State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 339–342.

All ion concentrations in this paper are given according to their nominal values in the charge.

Simple modeling shows that formula (1) adequately describes the initial stage of Mn5+ population kinetics also in the case of the two-photon excitation discussed in Section 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic setup for diffraction measurements.

Fig. 2
Fig. 2

Absorption spectrum of a yellow (unexposed) Mn(0.5%):YAlO3 sample (trace 1), gray sample exposed with a medium-large dose of Ar+ laser radiation (trace 2), and a dark-bluish-gray sample exposed with a large dose of Ar+ laser radiation (trace 3).

Fig. 3
Fig. 3

Infrared absorption of strongly exposed dark-bluish-gray Mn(0.5%):YAlO3.

Fig. 4
Fig. 4

Maximum Mn5+ photoinduced absorption (registered at 632.8 nm) as a function of 480-nm Mn4+ absorption in unexposed crystal. Nominal doping concentrations in different samples studied correspond to the following: 1, 0.5%Mn, 0.1%Ce; 2, 0.5%Mn, 0.05%Ce; 3, 0.5%Mn, 5.5%Ce, 0.5%Ca; 4 and 5, 0.5%Mn; 6, 2%Mn, 0.05%Ce. In the Mn-2%-doped sample, because of strong coloration at the pumping wavelength (514.5 nm), we did not reach maximum Mn5+ concentration along the entire beam path. Thus the corresponding data point (filled square) should be higher than it appears in the figure.

Fig. 5
Fig. 5

Dynamics of, 1, diffracted and, 2, transmitted He–Ne beams in Mn(0.5%), Ce(0.05%): YAlO3 excited with two mutually coherent 514.5-nm laser beams. Main panel, the intensity of each writing beam is equal to 2.1 J/cm2; inset, the intensity of each writing beam is equal to 4.2 J/cm2. Traces 1 and 2 are not in scale; the maximum intensity of the diffracted beam is much less than that of the transmitted beam.

Fig. 6
Fig. 6

Dependence of, filled circles, the coloration rate [σabsprobe1Nst/τ, Eq. (3)], and shaded circles, the diffraction rate on the excitation power (514.5 nm) in optically thin (at 514.5 nm) Mn(0.5%): Ce(0.05%): YAlO3 crystal.

Fig. 7
Fig. 7

Absorption spectrum of Mn(0.5%),Ce(0.5%):YAlO3 exposed to (trace 1) Ar+ laser radiation and (trace 2) sunlight radiation.

Fig. 8
Fig. 8

Schematic diagram of excitation, ionization, and recombination in Mn:YAlO3 illuminated with green light. Thick arrows correspond to ground-state absorption and excited-state absorption, thin arrows correspond to intracentral relaxation, and thin shaded arrows correspond to ionization–recombination processes; e, electron in the conduction subband; j, diffusion and drift current. Positions of the boxes do not reflect exact energies of the states.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N(t)=Nst[1-exp(-t/τ)]
Itrprobe=exp(-Kabsprobe(t)l)=exp(-σabsprobeN(t)l),
Itr(t)1-(σabsprobelNst/τ)t.
Id[1-exp(-t/τd)]

Metrics