Abstract

We have improved the sensitivity and signal-to-noise ratio of a luminescence upconversion experiment, using a charge-coupled device (CCD) as the detector. We show experimentally and numerically that the bandwidth of a 1-mm-thick β-barium borate crystal is large enough to take full advantage of the multichannel capabilities of the CCD. The improvement is significant in a standard experiment with a single laser as well as in experiments with resonant excitation that use two synchronized femtosecond pulse sources at different wavelengths. The characteristics of the two-color scheme are discussed in detail.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Mahr and M. D. Hirsch, “An optical up-conversion gate with picosecond resolution,” Opt. Commun. 13, 96–99 (1975).
    [CrossRef]
  2. J. Shah, “Ultrafast luminescence spectroscopy using sum frequency generation,” IEEE J. Quantum Electron. 24, 276–288 (1988); J. Shah, T. C. Damen, B. Deveaud, and D. Block, “Subpicosecond luminescence spectroscopy using sum frequency generation,” Appl. Phys. Lett. 50, 1307–1309 (1987); T. C. Damen and J. Shah, “Femtosecond luminescence spectroscopy with 60 fs compressed pulses,” Appl. Phys. Lett. APPLAB 52, 1291–1293 (1988).
    [CrossRef]
  3. See, for instance, W. E. Bron, ed., Ultrashort Process in Condensed Matter, Vol. 314 of NATO ASI Ser. B (Plenum, New York, 1993); R. Philips, ed., Coherent Phenomena in Semiconductors, Vol. 330 of NATO ASI Ser. B (Plenum, New York, 1994).
  4. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, Vol. 115 of Springer Series in Solid State Sciences (Springer-Verlag, Berlin, 1996).
    [CrossRef]
  5. J.-P. Foing, J.-P. Likforman, M. Joffre, and A. Migus, “Femtosecond pulse phase measurement by spectrally resolved upconversion: application to continuum compression,” IEEE J. Quantum Electron. 28, 2285–2290 (1992); D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993); J. Paye, M. Ramaswamy, J. G. Fujimoto, and E. Ippen, “Measurement of the amplitude and phase of ultrashort light pulses from spectrally resolved autocorrelation,” Opt. Lett. OPLEDP 18, 1946–1948 (1993); J.-K. Rhee, T. S. Sosnokowski, A.-C. Tien, and T. C. Norris, “Real-time dispersion analyzer of femtosecond laser pulses with use of a spectrally and temporally resolved upconversion technique,” J. Opt. Soc. Am. B JOBPDE 13, 1780–1785 (1996).
    [CrossRef] [PubMed]
  6. M. R. Freeman, D. D. Awschalom, and J. M. Hong, “Picosecond photoluminescence excitation spectroscopy of GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 57, 704–706 (1990).
    [CrossRef]
  7. A. Vinattieri, J. Shah, T. C. Damen, D. S. Kim, L. N. Pfeiffer, and L. J. Sham, “Picosecond dynamics of resonantly excited excitons in GaAs quantum wells,” Solid State Commun. 88, 189–193 (1993).
    [CrossRef]
  8. G. Mak and W. W. Rühle, “Femtosecond carrier dynamics in Ge measured by a luminescence up-conversion technique and near-band infrared excitation,” Phys. Rev. B 52, R11584–R11587 (1995).
    [CrossRef]
  9. H. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: the role of momentum scattering,” Phys. Rev. Lett. 74, 3065–3068 (1995).
    [CrossRef] [PubMed]
  10. S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission fromquantum well excitons: the role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78, 2228–2231 (1997).
    [CrossRef]
  11. M. Hartig, S. Haacke, B. Deveaud, R. A. Taylor, and L. Rota, “Intersubband scattering rates due to efficient carrier-carrier interaction in wide (AlGaAs/GaAs) quantum well structures,” submitted to Phys. Rev. Lett.
  12. J. Warner, “Phase-matching for optical up-conversion with maximum angular aperture—theory and practice,” Optoelectronics 1, 25–28 (1969).
  13. R. Ambigapathy, I. Bar-Joseph, D. Y. Oberli, S. Haacke, M. J. Brasil, F. Reinhardt, E. Kapon, and B. Deveaud, “Coulomb correlation and bandgap renormalization at high carrier densities in quantum wires,” Phys. Rev. Lett. 78, 3579–3582 (1997).
    [CrossRef]

1997 (2)

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission fromquantum well excitons: the role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78, 2228–2231 (1997).
[CrossRef]

R. Ambigapathy, I. Bar-Joseph, D. Y. Oberli, S. Haacke, M. J. Brasil, F. Reinhardt, E. Kapon, and B. Deveaud, “Coulomb correlation and bandgap renormalization at high carrier densities in quantum wires,” Phys. Rev. Lett. 78, 3579–3582 (1997).
[CrossRef]

1995 (2)

G. Mak and W. W. Rühle, “Femtosecond carrier dynamics in Ge measured by a luminescence up-conversion technique and near-band infrared excitation,” Phys. Rev. B 52, R11584–R11587 (1995).
[CrossRef]

H. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: the role of momentum scattering,” Phys. Rev. Lett. 74, 3065–3068 (1995).
[CrossRef] [PubMed]

1993 (1)

A. Vinattieri, J. Shah, T. C. Damen, D. S. Kim, L. N. Pfeiffer, and L. J. Sham, “Picosecond dynamics of resonantly excited excitons in GaAs quantum wells,” Solid State Commun. 88, 189–193 (1993).
[CrossRef]

1990 (1)

M. R. Freeman, D. D. Awschalom, and J. M. Hong, “Picosecond photoluminescence excitation spectroscopy of GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 57, 704–706 (1990).
[CrossRef]

1975 (1)

H. Mahr and M. D. Hirsch, “An optical up-conversion gate with picosecond resolution,” Opt. Commun. 13, 96–99 (1975).
[CrossRef]

1969 (1)

J. Warner, “Phase-matching for optical up-conversion with maximum angular aperture—theory and practice,” Optoelectronics 1, 25–28 (1969).

Ambigapathy, R.

R. Ambigapathy, I. Bar-Joseph, D. Y. Oberli, S. Haacke, M. J. Brasil, F. Reinhardt, E. Kapon, and B. Deveaud, “Coulomb correlation and bandgap renormalization at high carrier densities in quantum wires,” Phys. Rev. Lett. 78, 3579–3582 (1997).
[CrossRef]

Awschalom, D. D.

M. R. Freeman, D. D. Awschalom, and J. M. Hong, “Picosecond photoluminescence excitation spectroscopy of GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 57, 704–706 (1990).
[CrossRef]

Bar-Joseph, I.

R. Ambigapathy, I. Bar-Joseph, D. Y. Oberli, S. Haacke, M. J. Brasil, F. Reinhardt, E. Kapon, and B. Deveaud, “Coulomb correlation and bandgap renormalization at high carrier densities in quantum wires,” Phys. Rev. Lett. 78, 3579–3582 (1997).
[CrossRef]

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission fromquantum well excitons: the role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78, 2228–2231 (1997).
[CrossRef]

Brasil, M. J.

R. Ambigapathy, I. Bar-Joseph, D. Y. Oberli, S. Haacke, M. J. Brasil, F. Reinhardt, E. Kapon, and B. Deveaud, “Coulomb correlation and bandgap renormalization at high carrier densities in quantum wires,” Phys. Rev. Lett. 78, 3579–3582 (1997).
[CrossRef]

Damen, T. C.

H. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: the role of momentum scattering,” Phys. Rev. Lett. 74, 3065–3068 (1995).
[CrossRef] [PubMed]

A. Vinattieri, J. Shah, T. C. Damen, D. S. Kim, L. N. Pfeiffer, and L. J. Sham, “Picosecond dynamics of resonantly excited excitons in GaAs quantum wells,” Solid State Commun. 88, 189–193 (1993).
[CrossRef]

Deveaud, B.

R. Ambigapathy, I. Bar-Joseph, D. Y. Oberli, S. Haacke, M. J. Brasil, F. Reinhardt, E. Kapon, and B. Deveaud, “Coulomb correlation and bandgap renormalization at high carrier densities in quantum wires,” Phys. Rev. Lett. 78, 3579–3582 (1997).
[CrossRef]

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission fromquantum well excitons: the role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78, 2228–2231 (1997).
[CrossRef]

Freeman, M. R.

M. R. Freeman, D. D. Awschalom, and J. M. Hong, “Picosecond photoluminescence excitation spectroscopy of GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 57, 704–706 (1990).
[CrossRef]

Haacke, S.

R. Ambigapathy, I. Bar-Joseph, D. Y. Oberli, S. Haacke, M. J. Brasil, F. Reinhardt, E. Kapon, and B. Deveaud, “Coulomb correlation and bandgap renormalization at high carrier densities in quantum wires,” Phys. Rev. Lett. 78, 3579–3582 (1997).
[CrossRef]

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission fromquantum well excitons: the role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78, 2228–2231 (1997).
[CrossRef]

Hirsch, M. D.

H. Mahr and M. D. Hirsch, “An optical up-conversion gate with picosecond resolution,” Opt. Commun. 13, 96–99 (1975).
[CrossRef]

Hong, J. M.

M. R. Freeman, D. D. Awschalom, and J. M. Hong, “Picosecond photoluminescence excitation spectroscopy of GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 57, 704–706 (1990).
[CrossRef]

Kapon, E.

R. Ambigapathy, I. Bar-Joseph, D. Y. Oberli, S. Haacke, M. J. Brasil, F. Reinhardt, E. Kapon, and B. Deveaud, “Coulomb correlation and bandgap renormalization at high carrier densities in quantum wires,” Phys. Rev. Lett. 78, 3579–3582 (1997).
[CrossRef]

Kim, D. S.

A. Vinattieri, J. Shah, T. C. Damen, D. S. Kim, L. N. Pfeiffer, and L. J. Sham, “Picosecond dynamics of resonantly excited excitons in GaAs quantum wells,” Solid State Commun. 88, 189–193 (1993).
[CrossRef]

Mahr, H.

H. Mahr and M. D. Hirsch, “An optical up-conversion gate with picosecond resolution,” Opt. Commun. 13, 96–99 (1975).
[CrossRef]

Mak, G.

G. Mak and W. W. Rühle, “Femtosecond carrier dynamics in Ge measured by a luminescence up-conversion technique and near-band infrared excitation,” Phys. Rev. B 52, R11584–R11587 (1995).
[CrossRef]

Oberli, D. Y.

R. Ambigapathy, I. Bar-Joseph, D. Y. Oberli, S. Haacke, M. J. Brasil, F. Reinhardt, E. Kapon, and B. Deveaud, “Coulomb correlation and bandgap renormalization at high carrier densities in quantum wires,” Phys. Rev. Lett. 78, 3579–3582 (1997).
[CrossRef]

Pfeiffer, L. N.

H. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: the role of momentum scattering,” Phys. Rev. Lett. 74, 3065–3068 (1995).
[CrossRef] [PubMed]

A. Vinattieri, J. Shah, T. C. Damen, D. S. Kim, L. N. Pfeiffer, and L. J. Sham, “Picosecond dynamics of resonantly excited excitons in GaAs quantum wells,” Solid State Commun. 88, 189–193 (1993).
[CrossRef]

Reinhardt, F.

R. Ambigapathy, I. Bar-Joseph, D. Y. Oberli, S. Haacke, M. J. Brasil, F. Reinhardt, E. Kapon, and B. Deveaud, “Coulomb correlation and bandgap renormalization at high carrier densities in quantum wires,” Phys. Rev. Lett. 78, 3579–3582 (1997).
[CrossRef]

Rühle, W. W.

G. Mak and W. W. Rühle, “Femtosecond carrier dynamics in Ge measured by a luminescence up-conversion technique and near-band infrared excitation,” Phys. Rev. B 52, R11584–R11587 (1995).
[CrossRef]

Shah, J.

H. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: the role of momentum scattering,” Phys. Rev. Lett. 74, 3065–3068 (1995).
[CrossRef] [PubMed]

A. Vinattieri, J. Shah, T. C. Damen, D. S. Kim, L. N. Pfeiffer, and L. J. Sham, “Picosecond dynamics of resonantly excited excitons in GaAs quantum wells,” Solid State Commun. 88, 189–193 (1993).
[CrossRef]

Sham, L. J.

A. Vinattieri, J. Shah, T. C. Damen, D. S. Kim, L. N. Pfeiffer, and L. J. Sham, “Picosecond dynamics of resonantly excited excitons in GaAs quantum wells,” Solid State Commun. 88, 189–193 (1993).
[CrossRef]

Taylor, R. A.

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission fromquantum well excitons: the role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78, 2228–2231 (1997).
[CrossRef]

Vinattieri, A.

A. Vinattieri, J. Shah, T. C. Damen, D. S. Kim, L. N. Pfeiffer, and L. J. Sham, “Picosecond dynamics of resonantly excited excitons in GaAs quantum wells,” Solid State Commun. 88, 189–193 (1993).
[CrossRef]

Wang, H.

H. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: the role of momentum scattering,” Phys. Rev. Lett. 74, 3065–3068 (1995).
[CrossRef] [PubMed]

Warner, J.

J. Warner, “Phase-matching for optical up-conversion with maximum angular aperture—theory and practice,” Optoelectronics 1, 25–28 (1969).

Zimmermann, R.

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission fromquantum well excitons: the role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78, 2228–2231 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

M. R. Freeman, D. D. Awschalom, and J. M. Hong, “Picosecond photoluminescence excitation spectroscopy of GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 57, 704–706 (1990).
[CrossRef]

Opt. Commun. (1)

H. Mahr and M. D. Hirsch, “An optical up-conversion gate with picosecond resolution,” Opt. Commun. 13, 96–99 (1975).
[CrossRef]

Optoelectronics (1)

J. Warner, “Phase-matching for optical up-conversion with maximum angular aperture—theory and practice,” Optoelectronics 1, 25–28 (1969).

Phys. Rev. B (1)

G. Mak and W. W. Rühle, “Femtosecond carrier dynamics in Ge measured by a luminescence up-conversion technique and near-band infrared excitation,” Phys. Rev. B 52, R11584–R11587 (1995).
[CrossRef]

Phys. Rev. Lett. (3)

H. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: the role of momentum scattering,” Phys. Rev. Lett. 74, 3065–3068 (1995).
[CrossRef] [PubMed]

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission fromquantum well excitons: the role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78, 2228–2231 (1997).
[CrossRef]

R. Ambigapathy, I. Bar-Joseph, D. Y. Oberli, S. Haacke, M. J. Brasil, F. Reinhardt, E. Kapon, and B. Deveaud, “Coulomb correlation and bandgap renormalization at high carrier densities in quantum wires,” Phys. Rev. Lett. 78, 3579–3582 (1997).
[CrossRef]

Solid State Commun. (1)

A. Vinattieri, J. Shah, T. C. Damen, D. S. Kim, L. N. Pfeiffer, and L. J. Sham, “Picosecond dynamics of resonantly excited excitons in GaAs quantum wells,” Solid State Commun. 88, 189–193 (1993).
[CrossRef]

Other (5)

M. Hartig, S. Haacke, B. Deveaud, R. A. Taylor, and L. Rota, “Intersubband scattering rates due to efficient carrier-carrier interaction in wide (AlGaAs/GaAs) quantum well structures,” submitted to Phys. Rev. Lett.

J. Shah, “Ultrafast luminescence spectroscopy using sum frequency generation,” IEEE J. Quantum Electron. 24, 276–288 (1988); J. Shah, T. C. Damen, B. Deveaud, and D. Block, “Subpicosecond luminescence spectroscopy using sum frequency generation,” Appl. Phys. Lett. 50, 1307–1309 (1987); T. C. Damen and J. Shah, “Femtosecond luminescence spectroscopy with 60 fs compressed pulses,” Appl. Phys. Lett. APPLAB 52, 1291–1293 (1988).
[CrossRef]

See, for instance, W. E. Bron, ed., Ultrashort Process in Condensed Matter, Vol. 314 of NATO ASI Ser. B (Plenum, New York, 1993); R. Philips, ed., Coherent Phenomena in Semiconductors, Vol. 330 of NATO ASI Ser. B (Plenum, New York, 1994).

J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, Vol. 115 of Springer Series in Solid State Sciences (Springer-Verlag, Berlin, 1996).
[CrossRef]

J.-P. Foing, J.-P. Likforman, M. Joffre, and A. Migus, “Femtosecond pulse phase measurement by spectrally resolved upconversion: application to continuum compression,” IEEE J. Quantum Electron. 28, 2285–2290 (1992); D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993); J. Paye, M. Ramaswamy, J. G. Fujimoto, and E. Ippen, “Measurement of the amplitude and phase of ultrashort light pulses from spectrally resolved autocorrelation,” Opt. Lett. OPLEDP 18, 1946–1948 (1993); J.-K. Rhee, T. S. Sosnokowski, A.-C. Tien, and T. C. Norris, “Real-time dispersion analyzer of femtosecond laser pulses with use of a spectrally and temporally resolved upconversion technique,” J. Opt. Soc. Am. B JOBPDE 13, 1780–1785 (1996).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the upconversion experiment in the two-color scheme. The 1.5-μm output of the synchronously pumped parametric oscillator (SPPO) is used for generation of the sum-frequency signal near 0.5 μm. P1, P2, parabolic off-axis mirrors; NLX, nonlinear crystal; L1–L3, lenses, PR1, λ/2 plate.

Fig. 2
Fig. 2

Comparison of the CCD and PMT signals for (a) time-resolved and (b) spectrally resolved PL of a quantum wire array under high carrier density (n2×106 cm-1). The two lowest quantum wire subbands are filled; the third is only weakly populated. The y axis represents the total number of photons collected by each detector within the respective exposure time. The PMT spectrum is shifted vertically; the baseline is indicated. Inset in (b), spectrum recorded with the CCD but with the BBO crystal rotating.

Fig. 3
Fig. 3

Spectral responses of BBO with thickness (a) L=1.0 mm and (b) L=0.5 mm. The measured spectra (thin solid curve) corrected for the PL source intensity [dashed curve in (a)] are compared with the calculated response (broad solid curves). The calculated response can replace the measured one for calibration purposes within the 130 meV indicated by the arrow in (a). The FWHM of the calculated η(Δk) doubles when L is reduced by one half. However, in the experiment, because of the angular spread of laser and luminescence, the effect of L is almost washed out. The relative heights of the curves are arbitrary.

Fig. 4
Fig. 4

Comparison of upconversion spectra taken in (a) the one-color and (b) the two-color schemes for the same double-QW structure. Despite the subtraction of the time-independent background a perturbing signal remains at 3.25–3.28 eV [lower curve in (a)]. The two-color scheme permits resonant excitation, as indicated by the remaining laser scatter in the 500-fs spectrum. In both figures the spectra are vertically shifted for clarity.

Fig. 5
Fig. 5

Time-resolved emission from resonantly created excitons in GaAs QW’s displaying quantum beats between the heavy-hole and the light-hole excitons. The emission rises quadratically in time (the dashed curve is guide to the eye). Inset, spectrally resolved data taken at the first three maxima and minima of the time-resolved spectrum. The periodic shifts of the spectral maxima corroborate the picture of excitonic quantum beats. The steady-state emission energies of both types of exciton [X(HH) and X(LH)] are indicated.

Tables (1)

Tables Icon

Table 1 Experimental FWHM and FWTM of the Spectral Responses of Different Nonlinear Crystals Measured with a CCD a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η(Δk)sin2(LΔk)(LΔk)2,
Δk(ωlum)=|ks(ωlum)-klum(ωlum)-kL|,
fX(ωlum)=dψLdωLg(ψL, ΔψL)h(ωL, ΔωL)×η[Δk(ωlum, ωL, ψL)].

Metrics