Abstract

A kilohertz accuracy of line-shape measurements for ethylene and methanol was obtained in the 10-μm region by saturated-absorption heterodyne spectroscopy. For both molecules, precise determination of self-broadening coefficients and values of pressure-induced shifts were carried out at pressures <200 mTorr. Foreign gas effects were investigated for the combinations of collisional partners: C2H4+O2, N2, He, and CH3OH+O2. Nonlinear line narrowing and change of sign of the line shift were recorded, and some qualitative considerations are presented. Absolute frequencies of the ethylene and methanol rovibrational lines under study were measured with a total experimental uncertainty <5 kHz.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Anselm, K. M. T. Yamada, R. Schieder, and G. Winnewisser, “Measurements of foreign gas pressure shift and broadening effects in the (1–0) band of CO with N2 and Ar,” J. Mol. Spectrosc. 161, 284–296 (1993).
    [CrossRef]
  2. F Raynaud, A. Babay, V. Lemaire, and F. Rohart, “A high precision technique for pressure lineshift measurements: application to NH3 and HCN,” Spectrochim. Acta A 52, 1061–1067 (1996).
    [CrossRef]
  3. V. S. Letokhov and V. P. Chebotaev, Nonlinear Laser Spectroscopy (Springer-Verlag, Berlin, 1977), Chap. 8, pp. 331–363.
  4. O. Pfister, F. Guernet, G. Charton, Ch. Chardonnet, F. Herlemont, and J. Legrand, “CO2-laser sideband spectroscopy at ultrahigh resolution,” J. Opt. Soc. Am. B 10, 1521–1525 (1993).
    [CrossRef]
  5. S. N. Bagaev, E. V. Baklanov, and V. P. Chebotaev, “Measurement of elastic scattering cross sections in a gas by laser spectroscopy methods,” JETP Lett. 16, 9–12 (1972).
  6. A. T. Mattick, N. A. Karnit, and A. Javan, “Velocity dependence of collision broadening cross sections in NH3,” Chem. Phys. Lett. 38, 176–180 (1976).
    [CrossRef]
  7. T. W. Meyer, C. K. Rhodes, and H. A. Haus, “High-resolution line broadening and collisional studies in CO2 using nonlinear spectroscopic techniques,” Phys. Rev. A 12, 1993–2008 (1975).
    [CrossRef]
  8. K. L. Soohoo, C. Freed, J. E. Thomas, and H. A. Haus, “Line-center stabilized CO2 laser as a secondary frequency standards: determination of pressure shifts and other errors,” IEEE J. Quantum Electron. 21, 1159–1171 (1985).
    [CrossRef]
  9. Ch. Chardonnet, A. Van Lerberge, and Ch. J. Bordé, “Absolute frequency determination of super-narrow CO2 saturation peaks observed in an external absorption cell,” Opt. Commun. 58, 333–337 (1986).
    [CrossRef]
  10. E. V. Ivash and D. M. Dennison, “The methyl alcohol molecule and its microwave spectrum,” J. Chem. Phys. 21, 1804–1816 (1953).
    [CrossRef]
  11. F. Herlemont, M. Lyszyk, Ch. Lambeau, M. De Vleeschouwer, and A. Fayt, “Saturated absorption of C2H4 with a CO2 waveguide laser,” J. Mol. Spectrosc. 94, 309–315 (1982).
    [CrossRef]
  12. S. Petersen and J. O. Henningsen, “Saturated absorption Stark spectroscopy of CH3OH with CO2 lasers,” Infrared Phys. 26, 55–71 (1986).
    [CrossRef]
  13. D. P. Goodwin, M. J. Padgett, and R. J. Butcher, “The Cambridge CO2 laser saturation spectrometer,” J. Mod. Opt. 37, 737–747 (1990).
    [CrossRef]
  14. W. D. C. von Klitzing, “Ultra-high resolution CO2 laser spectroscopy and transient line narrowing,” Ph.D. dissertation (Cambridge University, Cambridge, UK, 1996); W. D. C. von Klitzing and R. J. Butcher, “Practical issues in the development of saturation spectroscopy at ultra-high resolution,” Meas. Sci. Technol. 9, 1–5 (1998).
    [CrossRef]
  15. G. Guelachvili and K. Narahari Rao, Handbook of Infrared Standards (Academic, New York, 1986), Table 6, p. 21.
  16. V. A. Alekseev, T. L. Andreeva, and I. I. Sobelman, “Contribution to the theory of nonlinear power resonances in gas lasers,” Sov. Phys. JETP 37, 413–418 (1973).
  17. Ch. J. Bordé, “Progress in understanding sub-Doppler line shapes,” in Laser Spectroscopy III, J. J. Hall and J. L. Carlsten, eds., Vol. 4 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1977), pp. 121–134.
  18. J. F. Brannon and P. Varanasi, “Tunable diode laser measurements on the 951.7393 cm−1 line of 12C2H4 at planetary atmospheric temperatures,” J. Quant. Spectrosc. Radiat. Transf. 47, 237–242 (1992).
    [CrossRef]
  19. Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigue, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 A and 5017 A: I-main resonances,” J. Phys. (France) 42, 1393–1411 (1981).
    [CrossRef]
  20. R. A. Forber, J. Tenenbaum, and M. S. Feld, “Laser Stark saturation spectroscopy in methyl alcohol,” Int. J. Infrared Millim. Waves 4, 527–560 (1980).
    [CrossRef]
  21. P. W. Anderson, “Pressure broadening in the microwave and infra-red regions,” Phys. Rev. 76, 647–661 (1949).
    [CrossRef]
  22. G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, Princeton, 1962), Part II.
  23. A. F. Krupnov, “Molecules of astrophysical interest: recent submillimeter and infrared spectra,” Infrared Phys. Technol. 35, 267–276 (1994).
    [CrossRef]

1996

F Raynaud, A. Babay, V. Lemaire, and F. Rohart, “A high precision technique for pressure lineshift measurements: application to NH3 and HCN,” Spectrochim. Acta A 52, 1061–1067 (1996).
[CrossRef]

1994

A. F. Krupnov, “Molecules of astrophysical interest: recent submillimeter and infrared spectra,” Infrared Phys. Technol. 35, 267–276 (1994).
[CrossRef]

1993

N. Anselm, K. M. T. Yamada, R. Schieder, and G. Winnewisser, “Measurements of foreign gas pressure shift and broadening effects in the (1–0) band of CO with N2 and Ar,” J. Mol. Spectrosc. 161, 284–296 (1993).
[CrossRef]

O. Pfister, F. Guernet, G. Charton, Ch. Chardonnet, F. Herlemont, and J. Legrand, “CO2-laser sideband spectroscopy at ultrahigh resolution,” J. Opt. Soc. Am. B 10, 1521–1525 (1993).
[CrossRef]

1992

J. F. Brannon and P. Varanasi, “Tunable diode laser measurements on the 951.7393 cm−1 line of 12C2H4 at planetary atmospheric temperatures,” J. Quant. Spectrosc. Radiat. Transf. 47, 237–242 (1992).
[CrossRef]

1990

D. P. Goodwin, M. J. Padgett, and R. J. Butcher, “The Cambridge CO2 laser saturation spectrometer,” J. Mod. Opt. 37, 737–747 (1990).
[CrossRef]

1986

Ch. Chardonnet, A. Van Lerberge, and Ch. J. Bordé, “Absolute frequency determination of super-narrow CO2 saturation peaks observed in an external absorption cell,” Opt. Commun. 58, 333–337 (1986).
[CrossRef]

S. Petersen and J. O. Henningsen, “Saturated absorption Stark spectroscopy of CH3OH with CO2 lasers,” Infrared Phys. 26, 55–71 (1986).
[CrossRef]

1985

K. L. Soohoo, C. Freed, J. E. Thomas, and H. A. Haus, “Line-center stabilized CO2 laser as a secondary frequency standards: determination of pressure shifts and other errors,” IEEE J. Quantum Electron. 21, 1159–1171 (1985).
[CrossRef]

1982

F. Herlemont, M. Lyszyk, Ch. Lambeau, M. De Vleeschouwer, and A. Fayt, “Saturated absorption of C2H4 with a CO2 waveguide laser,” J. Mol. Spectrosc. 94, 309–315 (1982).
[CrossRef]

1981

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigue, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 A and 5017 A: I-main resonances,” J. Phys. (France) 42, 1393–1411 (1981).
[CrossRef]

1980

R. A. Forber, J. Tenenbaum, and M. S. Feld, “Laser Stark saturation spectroscopy in methyl alcohol,” Int. J. Infrared Millim. Waves 4, 527–560 (1980).
[CrossRef]

1976

A. T. Mattick, N. A. Karnit, and A. Javan, “Velocity dependence of collision broadening cross sections in NH3,” Chem. Phys. Lett. 38, 176–180 (1976).
[CrossRef]

1975

T. W. Meyer, C. K. Rhodes, and H. A. Haus, “High-resolution line broadening and collisional studies in CO2 using nonlinear spectroscopic techniques,” Phys. Rev. A 12, 1993–2008 (1975).
[CrossRef]

1973

V. A. Alekseev, T. L. Andreeva, and I. I. Sobelman, “Contribution to the theory of nonlinear power resonances in gas lasers,” Sov. Phys. JETP 37, 413–418 (1973).

1972

S. N. Bagaev, E. V. Baklanov, and V. P. Chebotaev, “Measurement of elastic scattering cross sections in a gas by laser spectroscopy methods,” JETP Lett. 16, 9–12 (1972).

1953

E. V. Ivash and D. M. Dennison, “The methyl alcohol molecule and its microwave spectrum,” J. Chem. Phys. 21, 1804–1816 (1953).
[CrossRef]

1949

P. W. Anderson, “Pressure broadening in the microwave and infra-red regions,” Phys. Rev. 76, 647–661 (1949).
[CrossRef]

Alekseev, V. A.

V. A. Alekseev, T. L. Andreeva, and I. I. Sobelman, “Contribution to the theory of nonlinear power resonances in gas lasers,” Sov. Phys. JETP 37, 413–418 (1973).

Anderson, P. W.

P. W. Anderson, “Pressure broadening in the microwave and infra-red regions,” Phys. Rev. 76, 647–661 (1949).
[CrossRef]

Andreeva, T. L.

V. A. Alekseev, T. L. Andreeva, and I. I. Sobelman, “Contribution to the theory of nonlinear power resonances in gas lasers,” Sov. Phys. JETP 37, 413–418 (1973).

Anselm, N.

N. Anselm, K. M. T. Yamada, R. Schieder, and G. Winnewisser, “Measurements of foreign gas pressure shift and broadening effects in the (1–0) band of CO with N2 and Ar,” J. Mol. Spectrosc. 161, 284–296 (1993).
[CrossRef]

Babay, A.

F Raynaud, A. Babay, V. Lemaire, and F. Rohart, “A high precision technique for pressure lineshift measurements: application to NH3 and HCN,” Spectrochim. Acta A 52, 1061–1067 (1996).
[CrossRef]

Bagaev, S. N.

S. N. Bagaev, E. V. Baklanov, and V. P. Chebotaev, “Measurement of elastic scattering cross sections in a gas by laser spectroscopy methods,” JETP Lett. 16, 9–12 (1972).

Baklanov, E. V.

S. N. Bagaev, E. V. Baklanov, and V. P. Chebotaev, “Measurement of elastic scattering cross sections in a gas by laser spectroscopy methods,” JETP Lett. 16, 9–12 (1972).

Bordé, Ch. J.

Ch. Chardonnet, A. Van Lerberge, and Ch. J. Bordé, “Absolute frequency determination of super-narrow CO2 saturation peaks observed in an external absorption cell,” Opt. Commun. 58, 333–337 (1986).
[CrossRef]

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigue, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 A and 5017 A: I-main resonances,” J. Phys. (France) 42, 1393–1411 (1981).
[CrossRef]

Brannon, J. F.

J. F. Brannon and P. Varanasi, “Tunable diode laser measurements on the 951.7393 cm−1 line of 12C2H4 at planetary atmospheric temperatures,” J. Quant. Spectrosc. Radiat. Transf. 47, 237–242 (1992).
[CrossRef]

Butcher, R. J.

D. P. Goodwin, M. J. Padgett, and R. J. Butcher, “The Cambridge CO2 laser saturation spectrometer,” J. Mod. Opt. 37, 737–747 (1990).
[CrossRef]

Camy, G.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigue, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 A and 5017 A: I-main resonances,” J. Phys. (France) 42, 1393–1411 (1981).
[CrossRef]

Chardonnet, Ch.

O. Pfister, F. Guernet, G. Charton, Ch. Chardonnet, F. Herlemont, and J. Legrand, “CO2-laser sideband spectroscopy at ultrahigh resolution,” J. Opt. Soc. Am. B 10, 1521–1525 (1993).
[CrossRef]

Ch. Chardonnet, A. Van Lerberge, and Ch. J. Bordé, “Absolute frequency determination of super-narrow CO2 saturation peaks observed in an external absorption cell,” Opt. Commun. 58, 333–337 (1986).
[CrossRef]

Charton, G.

Chebotaev, V. P.

S. N. Bagaev, E. V. Baklanov, and V. P. Chebotaev, “Measurement of elastic scattering cross sections in a gas by laser spectroscopy methods,” JETP Lett. 16, 9–12 (1972).

De Vleeschouwer, M.

F. Herlemont, M. Lyszyk, Ch. Lambeau, M. De Vleeschouwer, and A. Fayt, “Saturated absorption of C2H4 with a CO2 waveguide laser,” J. Mol. Spectrosc. 94, 309–315 (1982).
[CrossRef]

Decomps, B.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigue, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 A and 5017 A: I-main resonances,” J. Phys. (France) 42, 1393–1411 (1981).
[CrossRef]

Dennison, D. M.

E. V. Ivash and D. M. Dennison, “The methyl alcohol molecule and its microwave spectrum,” J. Chem. Phys. 21, 1804–1816 (1953).
[CrossRef]

Descoubes, J.-P.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigue, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 A and 5017 A: I-main resonances,” J. Phys. (France) 42, 1393–1411 (1981).
[CrossRef]

Fayt, A.

F. Herlemont, M. Lyszyk, Ch. Lambeau, M. De Vleeschouwer, and A. Fayt, “Saturated absorption of C2H4 with a CO2 waveguide laser,” J. Mol. Spectrosc. 94, 309–315 (1982).
[CrossRef]

Feld, M. S.

R. A. Forber, J. Tenenbaum, and M. S. Feld, “Laser Stark saturation spectroscopy in methyl alcohol,” Int. J. Infrared Millim. Waves 4, 527–560 (1980).
[CrossRef]

Forber, R. A.

R. A. Forber, J. Tenenbaum, and M. S. Feld, “Laser Stark saturation spectroscopy in methyl alcohol,” Int. J. Infrared Millim. Waves 4, 527–560 (1980).
[CrossRef]

Freed, C.

K. L. Soohoo, C. Freed, J. E. Thomas, and H. A. Haus, “Line-center stabilized CO2 laser as a secondary frequency standards: determination of pressure shifts and other errors,” IEEE J. Quantum Electron. 21, 1159–1171 (1985).
[CrossRef]

Goodwin, D. P.

D. P. Goodwin, M. J. Padgett, and R. J. Butcher, “The Cambridge CO2 laser saturation spectrometer,” J. Mod. Opt. 37, 737–747 (1990).
[CrossRef]

Guernet, F.

Haus, H. A.

K. L. Soohoo, C. Freed, J. E. Thomas, and H. A. Haus, “Line-center stabilized CO2 laser as a secondary frequency standards: determination of pressure shifts and other errors,” IEEE J. Quantum Electron. 21, 1159–1171 (1985).
[CrossRef]

T. W. Meyer, C. K. Rhodes, and H. A. Haus, “High-resolution line broadening and collisional studies in CO2 using nonlinear spectroscopic techniques,” Phys. Rev. A 12, 1993–2008 (1975).
[CrossRef]

Henningsen, J. O.

S. Petersen and J. O. Henningsen, “Saturated absorption Stark spectroscopy of CH3OH with CO2 lasers,” Infrared Phys. 26, 55–71 (1986).
[CrossRef]

Herlemont, F.

O. Pfister, F. Guernet, G. Charton, Ch. Chardonnet, F. Herlemont, and J. Legrand, “CO2-laser sideband spectroscopy at ultrahigh resolution,” J. Opt. Soc. Am. B 10, 1521–1525 (1993).
[CrossRef]

F. Herlemont, M. Lyszyk, Ch. Lambeau, M. De Vleeschouwer, and A. Fayt, “Saturated absorption of C2H4 with a CO2 waveguide laser,” J. Mol. Spectrosc. 94, 309–315 (1982).
[CrossRef]

Ivash, E. V.

E. V. Ivash and D. M. Dennison, “The methyl alcohol molecule and its microwave spectrum,” J. Chem. Phys. 21, 1804–1816 (1953).
[CrossRef]

Javan, A.

A. T. Mattick, N. A. Karnit, and A. Javan, “Velocity dependence of collision broadening cross sections in NH3,” Chem. Phys. Lett. 38, 176–180 (1976).
[CrossRef]

Karnit, N. A.

A. T. Mattick, N. A. Karnit, and A. Javan, “Velocity dependence of collision broadening cross sections in NH3,” Chem. Phys. Lett. 38, 176–180 (1976).
[CrossRef]

Krupnov, A. F.

A. F. Krupnov, “Molecules of astrophysical interest: recent submillimeter and infrared spectra,” Infrared Phys. Technol. 35, 267–276 (1994).
[CrossRef]

Lambeau, Ch.

F. Herlemont, M. Lyszyk, Ch. Lambeau, M. De Vleeschouwer, and A. Fayt, “Saturated absorption of C2H4 with a CO2 waveguide laser,” J. Mol. Spectrosc. 94, 309–315 (1982).
[CrossRef]

Legrand, J.

Lemaire, V.

F Raynaud, A. Babay, V. Lemaire, and F. Rohart, “A high precision technique for pressure lineshift measurements: application to NH3 and HCN,” Spectrochim. Acta A 52, 1061–1067 (1996).
[CrossRef]

Lyszyk, M.

F. Herlemont, M. Lyszyk, Ch. Lambeau, M. De Vleeschouwer, and A. Fayt, “Saturated absorption of C2H4 with a CO2 waveguide laser,” J. Mol. Spectrosc. 94, 309–315 (1982).
[CrossRef]

Mattick, A. T.

A. T. Mattick, N. A. Karnit, and A. Javan, “Velocity dependence of collision broadening cross sections in NH3,” Chem. Phys. Lett. 38, 176–180 (1976).
[CrossRef]

Meyer, T. W.

T. W. Meyer, C. K. Rhodes, and H. A. Haus, “High-resolution line broadening and collisional studies in CO2 using nonlinear spectroscopic techniques,” Phys. Rev. A 12, 1993–2008 (1975).
[CrossRef]

Padgett, M. J.

D. P. Goodwin, M. J. Padgett, and R. J. Butcher, “The Cambridge CO2 laser saturation spectrometer,” J. Mod. Opt. 37, 737–747 (1990).
[CrossRef]

Petersen, S.

S. Petersen and J. O. Henningsen, “Saturated absorption Stark spectroscopy of CH3OH with CO2 lasers,” Infrared Phys. 26, 55–71 (1986).
[CrossRef]

Pfister, O.

Raynaud, F

F Raynaud, A. Babay, V. Lemaire, and F. Rohart, “A high precision technique for pressure lineshift measurements: application to NH3 and HCN,” Spectrochim. Acta A 52, 1061–1067 (1996).
[CrossRef]

Rhodes, C. K.

T. W. Meyer, C. K. Rhodes, and H. A. Haus, “High-resolution line broadening and collisional studies in CO2 using nonlinear spectroscopic techniques,” Phys. Rev. A 12, 1993–2008 (1975).
[CrossRef]

Rohart, F.

F Raynaud, A. Babay, V. Lemaire, and F. Rohart, “A high precision technique for pressure lineshift measurements: application to NH3 and HCN,” Spectrochim. Acta A 52, 1061–1067 (1996).
[CrossRef]

Schieder, R.

N. Anselm, K. M. T. Yamada, R. Schieder, and G. Winnewisser, “Measurements of foreign gas pressure shift and broadening effects in the (1–0) band of CO with N2 and Ar,” J. Mol. Spectrosc. 161, 284–296 (1993).
[CrossRef]

Sobelman, I. I.

V. A. Alekseev, T. L. Andreeva, and I. I. Sobelman, “Contribution to the theory of nonlinear power resonances in gas lasers,” Sov. Phys. JETP 37, 413–418 (1973).

Soohoo, K. L.

K. L. Soohoo, C. Freed, J. E. Thomas, and H. A. Haus, “Line-center stabilized CO2 laser as a secondary frequency standards: determination of pressure shifts and other errors,” IEEE J. Quantum Electron. 21, 1159–1171 (1985).
[CrossRef]

Tenenbaum, J.

R. A. Forber, J. Tenenbaum, and M. S. Feld, “Laser Stark saturation spectroscopy in methyl alcohol,” Int. J. Infrared Millim. Waves 4, 527–560 (1980).
[CrossRef]

Thomas, J. E.

K. L. Soohoo, C. Freed, J. E. Thomas, and H. A. Haus, “Line-center stabilized CO2 laser as a secondary frequency standards: determination of pressure shifts and other errors,” IEEE J. Quantum Electron. 21, 1159–1171 (1985).
[CrossRef]

Van Lerberge, A.

Ch. Chardonnet, A. Van Lerberge, and Ch. J. Bordé, “Absolute frequency determination of super-narrow CO2 saturation peaks observed in an external absorption cell,” Opt. Commun. 58, 333–337 (1986).
[CrossRef]

Varanasi, P.

J. F. Brannon and P. Varanasi, “Tunable diode laser measurements on the 951.7393 cm−1 line of 12C2H4 at planetary atmospheric temperatures,” J. Quant. Spectrosc. Radiat. Transf. 47, 237–242 (1992).
[CrossRef]

Vigue, J.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigue, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 A and 5017 A: I-main resonances,” J. Phys. (France) 42, 1393–1411 (1981).
[CrossRef]

Winnewisser, G.

N. Anselm, K. M. T. Yamada, R. Schieder, and G. Winnewisser, “Measurements of foreign gas pressure shift and broadening effects in the (1–0) band of CO with N2 and Ar,” J. Mol. Spectrosc. 161, 284–296 (1993).
[CrossRef]

Yamada, K. M. T.

N. Anselm, K. M. T. Yamada, R. Schieder, and G. Winnewisser, “Measurements of foreign gas pressure shift and broadening effects in the (1–0) band of CO with N2 and Ar,” J. Mol. Spectrosc. 161, 284–296 (1993).
[CrossRef]

Chem. Phys. Lett.

A. T. Mattick, N. A. Karnit, and A. Javan, “Velocity dependence of collision broadening cross sections in NH3,” Chem. Phys. Lett. 38, 176–180 (1976).
[CrossRef]

IEEE J. Quantum Electron.

K. L. Soohoo, C. Freed, J. E. Thomas, and H. A. Haus, “Line-center stabilized CO2 laser as a secondary frequency standards: determination of pressure shifts and other errors,” IEEE J. Quantum Electron. 21, 1159–1171 (1985).
[CrossRef]

Infrared Phys.

S. Petersen and J. O. Henningsen, “Saturated absorption Stark spectroscopy of CH3OH with CO2 lasers,” Infrared Phys. 26, 55–71 (1986).
[CrossRef]

Infrared Phys. Technol.

A. F. Krupnov, “Molecules of astrophysical interest: recent submillimeter and infrared spectra,” Infrared Phys. Technol. 35, 267–276 (1994).
[CrossRef]

Int. J. Infrared Millim. Waves

R. A. Forber, J. Tenenbaum, and M. S. Feld, “Laser Stark saturation spectroscopy in methyl alcohol,” Int. J. Infrared Millim. Waves 4, 527–560 (1980).
[CrossRef]

J. Chem. Phys.

E. V. Ivash and D. M. Dennison, “The methyl alcohol molecule and its microwave spectrum,” J. Chem. Phys. 21, 1804–1816 (1953).
[CrossRef]

J. Mod. Opt.

D. P. Goodwin, M. J. Padgett, and R. J. Butcher, “The Cambridge CO2 laser saturation spectrometer,” J. Mod. Opt. 37, 737–747 (1990).
[CrossRef]

J. Mol. Spectrosc.

F. Herlemont, M. Lyszyk, Ch. Lambeau, M. De Vleeschouwer, and A. Fayt, “Saturated absorption of C2H4 with a CO2 waveguide laser,” J. Mol. Spectrosc. 94, 309–315 (1982).
[CrossRef]

N. Anselm, K. M. T. Yamada, R. Schieder, and G. Winnewisser, “Measurements of foreign gas pressure shift and broadening effects in the (1–0) band of CO with N2 and Ar,” J. Mol. Spectrosc. 161, 284–296 (1993).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. (France)

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigue, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 A and 5017 A: I-main resonances,” J. Phys. (France) 42, 1393–1411 (1981).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

J. F. Brannon and P. Varanasi, “Tunable diode laser measurements on the 951.7393 cm−1 line of 12C2H4 at planetary atmospheric temperatures,” J. Quant. Spectrosc. Radiat. Transf. 47, 237–242 (1992).
[CrossRef]

JETP Lett.

S. N. Bagaev, E. V. Baklanov, and V. P. Chebotaev, “Measurement of elastic scattering cross sections in a gas by laser spectroscopy methods,” JETP Lett. 16, 9–12 (1972).

Opt. Commun.

Ch. Chardonnet, A. Van Lerberge, and Ch. J. Bordé, “Absolute frequency determination of super-narrow CO2 saturation peaks observed in an external absorption cell,” Opt. Commun. 58, 333–337 (1986).
[CrossRef]

Phys. Rev.

P. W. Anderson, “Pressure broadening in the microwave and infra-red regions,” Phys. Rev. 76, 647–661 (1949).
[CrossRef]

Phys. Rev. A

T. W. Meyer, C. K. Rhodes, and H. A. Haus, “High-resolution line broadening and collisional studies in CO2 using nonlinear spectroscopic techniques,” Phys. Rev. A 12, 1993–2008 (1975).
[CrossRef]

Sov. Phys. JETP

V. A. Alekseev, T. L. Andreeva, and I. I. Sobelman, “Contribution to the theory of nonlinear power resonances in gas lasers,” Sov. Phys. JETP 37, 413–418 (1973).

Spectrochim. Acta A

F Raynaud, A. Babay, V. Lemaire, and F. Rohart, “A high precision technique for pressure lineshift measurements: application to NH3 and HCN,” Spectrochim. Acta A 52, 1061–1067 (1996).
[CrossRef]

Other

V. S. Letokhov and V. P. Chebotaev, Nonlinear Laser Spectroscopy (Springer-Verlag, Berlin, 1977), Chap. 8, pp. 331–363.

Ch. J. Bordé, “Progress in understanding sub-Doppler line shapes,” in Laser Spectroscopy III, J. J. Hall and J. L. Carlsten, eds., Vol. 4 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1977), pp. 121–134.

G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, Princeton, 1962), Part II.

W. D. C. von Klitzing, “Ultra-high resolution CO2 laser spectroscopy and transient line narrowing,” Ph.D. dissertation (Cambridge University, Cambridge, UK, 1996); W. D. C. von Klitzing and R. J. Butcher, “Practical issues in the development of saturation spectroscopy at ultra-high resolution,” Meas. Sci. Technol. 9, 1–5 (1998).
[CrossRef]

G. Guelachvili and K. Narahari Rao, Handbook of Infrared Standards (Academic, New York, 1986), Table 6, p. 21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the CO2 laser heterodyne spectrometer: PSD, phase-sensitive detector; RF, radio frequency; AOM, acousto-optic modulator. The beat-note detector was Ge:Cu cooled to 4 K, frequency synthesizer in servo electronics Marconi 2018, and counter HP5328A.

Fig. 2
Fig. 2

Typical saturated line profiles of the transition 256,19247,17 measured in pure ethylene at the following absorbers pressure: (a) p1=0.04 mTorr; ν=28 412 509 396 kHz, HWHM = 13.4 kHz; (b) p1=2.49 mTorr, ν=28 412 509 400 kHz, HWHM = 51.9 kHz. Experimental data are shown by the black crosses and the fitted Lorentzian by the curve. Residuals of the fit are plotted at the bottom by the dashed curve at 5× expansion.  

Fig. 3
Fig. 3

Lorentzian HWHM γ of the 256,19247,17 line of C2H4 as a function of C2H4 pressure. The curve is a polynomial fit of experimental data presented as guidance.

Fig. 4
Fig. 4

Example of measured pressure dependencies of the 256,19247,17 line of C2H4. (a) Lorentzian HWHM for pressure broadening by ethylene, N2, and He, together with least-squares fits. (b) The line shift Δν=ν-ν0 in pure C2H4. The polynomial fit is for guidance only. The error bars represent approximately one standard deviation as obtained from three or more measurements at each pressure.

Fig. 5
Fig. 5

Self-broadened Lorentzian HWHM γ of the P(nτK, 12) line of CH3OH by CH3OH as a function of pressure. The full line is a polynomial fit of experimental data presented as guidance.

Tables (1)

Tables Icon

Table 1 Results of Determination of Collisional-Broadening Coefficients and Pressure-Induced Line Shifts for C2H4 and CH3OH at Low Pressures <10 mTorr a

Metrics