Abstract

A method is reported for exciting surface-plasmon polaritons with a focused laser beam as the excitation probe. We calculate the electric-field intensity distribution on a silver surface that is due to the excited surface-plasmon polaritons. We find that polaritons are locally excited over an area that approximates the spot size of the focused beam. We also find that the field distribution is strongly influenced by polarization of the incident light. Our theoretical findings are experimentally confirmed by measuring the scattered light that is produced when a microsphere is scanned (from the air side) across a silver surface that is being probed for surface-plasmon polaritons.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982–1983).
    [CrossRef]
  2. K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27, 1160–1163 (1988).
    [CrossRef] [PubMed]
  3. K. Matsubara, S. Kawata, and S. Minami, “A compact surface plasmon resonance sensor for measurement of water in process,” Appl. Spectrosc. 42, 1375–1379 (1988).
    [CrossRef]
  4. S. Löfås and B. Johnsson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc. Chem. Commun. 21, 1526–1528 (1990).
  5. H. Kano and S. Kawata, “Grating-coupled surface plasmon for measuring the refractive index of a liquid sample,” Jpn. J. Appl. Phys. 1, 34, 331–335 (1995).
    [CrossRef]
  6. B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
    [CrossRef]
  7. T. Okamoto and I. Yamaguchi, “Surface plasmon microscope with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
    [CrossRef]
  8. H. Knobloch, G. von Szada-Boryszkowski, S. Woigk, A. Helms, and L. Brehmer, “Dispersive surface plasmon microscopy for the characterization of ultrathin organic films,” Appl. Phys. Lett. 69, 2336–2337 (1996).
    [CrossRef]
  9. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  10. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  11. H. Kano and S. Kawata, “Surface-plasmon sensor for absorption-sensitivity enhancement,” Appl. Opt. 33, 5166–5170 (1994).
    [CrossRef] [PubMed]
  12. T. Tanaka and S. Kawata, “Increasing the depth-of-focus using an axicon in photolithography,” Jpn. J. Opt. 24, 568–573 (1995).
  13. R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 1, 28, 1730–1731 (1989).
    [CrossRef]
  14. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
    [CrossRef] [PubMed]
  15. H. Kano and S. Kawata, “Two-photon-excited fluorescence enhanced by a surface plasmon,” Opt. Lett. 21, 1848–1850 (1996).
    [CrossRef] [PubMed]

1996 (3)

1995 (2)

T. Tanaka and S. Kawata, “Increasing the depth-of-focus using an axicon in photolithography,” Jpn. J. Opt. 24, 568–573 (1995).

H. Kano and S. Kawata, “Grating-coupled surface plasmon for measuring the refractive index of a liquid sample,” Jpn. J. Appl. Phys. 1, 34, 331–335 (1995).
[CrossRef]

1994 (1)

1992 (1)

T. Okamoto and I. Yamaguchi, “Surface plasmon microscope with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

1990 (1)

S. Löfås and B. Johnsson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc. Chem. Commun. 21, 1526–1528 (1990).

1989 (1)

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 1, 28, 1730–1731 (1989).
[CrossRef]

1988 (3)

1982 (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982–1983).
[CrossRef]

1968 (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Brehmer, L.

H. Knobloch, G. von Szada-Boryszkowski, S. Woigk, A. Helms, and L. Brehmer, “Dispersive surface plasmon microscopy for the characterization of ultrathin organic films,” Appl. Phys. Lett. 69, 2336–2337 (1996).
[CrossRef]

Helms, A.

H. Knobloch, G. von Szada-Boryszkowski, S. Woigk, A. Helms, and L. Brehmer, “Dispersive surface plasmon microscopy for the characterization of ultrathin organic films,” Appl. Phys. Lett. 69, 2336–2337 (1996).
[CrossRef]

Johnsson, B.

S. Löfås and B. Johnsson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc. Chem. Commun. 21, 1526–1528 (1990).

Kano, H.

Kawata, S.

Knobloch, H.

H. Knobloch, G. von Szada-Boryszkowski, S. Woigk, A. Helms, and L. Brehmer, “Dispersive surface plasmon microscopy for the characterization of ultrathin organic films,” Appl. Phys. Lett. 69, 2336–2337 (1996).
[CrossRef]

Knoll, W.

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Liedberg, B.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982–1983).
[CrossRef]

Lind, T.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982–1983).
[CrossRef]

Löfås, S.

S. Löfås and B. Johnsson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc. Chem. Commun. 21, 1526–1528 (1990).

Matsubara, K.

Minami, S.

Nose, T.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 1, 28, 1730–1731 (1989).
[CrossRef]

Nylander, C.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982–1983).
[CrossRef]

Okamoto, T.

T. Okamoto and I. Yamaguchi, “Surface plasmon microscope with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Rothenhäusler, B.

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Sato, S.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 1, 28, 1730–1731 (1989).
[CrossRef]

Schadt, M.

Stalder, M.

Tanaka, T.

T. Tanaka and S. Kawata, “Increasing the depth-of-focus using an axicon in photolithography,” Jpn. J. Opt. 24, 568–573 (1995).

von Szada-Boryszkowski, G.

H. Knobloch, G. von Szada-Boryszkowski, S. Woigk, A. Helms, and L. Brehmer, “Dispersive surface plasmon microscopy for the characterization of ultrathin organic films,” Appl. Phys. Lett. 69, 2336–2337 (1996).
[CrossRef]

Woigk, S.

H. Knobloch, G. von Szada-Boryszkowski, S. Woigk, A. Helms, and L. Brehmer, “Dispersive surface plasmon microscopy for the characterization of ultrathin organic films,” Appl. Phys. Lett. 69, 2336–2337 (1996).
[CrossRef]

Yamaguchi, I.

T. Okamoto and I. Yamaguchi, “Surface plasmon microscope with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

Yamaguchi, R.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 1, 28, 1730–1731 (1989).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. Knobloch, G. von Szada-Boryszkowski, S. Woigk, A. Helms, and L. Brehmer, “Dispersive surface plasmon microscopy for the characterization of ultrathin organic films,” Appl. Phys. Lett. 69, 2336–2337 (1996).
[CrossRef]

Appl. Spectrosc. (1)

J. Chem. Soc. Chem. Commun. (1)

S. Löfås and B. Johnsson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc. Chem. Commun. 21, 1526–1528 (1990).

Jpn. J. Appl. Phys. 1 (2)

H. Kano and S. Kawata, “Grating-coupled surface plasmon for measuring the refractive index of a liquid sample,” Jpn. J. Appl. Phys. 1, 34, 331–335 (1995).
[CrossRef]

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 1, 28, 1730–1731 (1989).
[CrossRef]

Jpn. J. Opt. (1)

T. Tanaka and S. Kawata, “Increasing the depth-of-focus using an axicon in photolithography,” Jpn. J. Opt. 24, 568–573 (1995).

Nature (1)

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Opt. Commun. (1)

T. Okamoto and I. Yamaguchi, “Surface plasmon microscope with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

Opt. Lett. (2)

Sens. Actuators (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982–1983).
[CrossRef]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Optical setup (Kretschmann–Raether configuration) for SPP excitation by means of an oil-immersion objective lens with a high numerical aperture.

Fig. 2
Fig. 2

Coordinates at the pupil plane of the objective lens.

Fig. 3
Fig. 3

Calculated electric-field intensity for linearly polarized light on the silver surface. The incident light is polarized along the y direction. The Kretschmann–Raether configuration and annular illumination are assumed in the calculation.

Fig. 4
Fig. 4

Calculated electric-field intensity for linearly polarized light on the glass surface. Glass–air configuration and annular illumination are assumed in the calculation.

Fig. 5
Fig. 5

Calculated electric-field intensity for linearly polarized light on the silver surface. Kretschmann–Raether configuration and circular pupil illumination are assumed in the calculation.

Fig. 6
Fig. 6

Amplitude transmission coefficient as a function of ρ=n0 sin θ (n0 denotes the refractive index of the glass substrate, which is 1.522, and θ denotes the incident angle at the glass–metal interface): (a) p-polarized and (b) s-polarized light. These curves are described by Eq. (4).

Fig. 7
Fig. 7

Incident polarization at the pupil plane of the objective lens: (a) radial polarization, (b) azimuth polarization, and (c) linear polarization, but the phase in ξ<0 is π delayed from another part.

Fig. 8
Fig. 8

Calculated results of the electric-field intensity for various types of incident polarization: (a) radial polarization, (b) azimuthal polarization, and (c) linear polarization, but the phase in ξ<0 is π delayed from another part. The Kretschmann–Raether configuration and annular illumination are assumed in the calculations.

Fig. 9
Fig. 9

Measured reflectance as a function of incident angle for the substrate prepared for the SPP experiment. A p-polarized light with λ=488 nm was used in the measurement. The absorption dip at 44.9° proves the SPP excitation. The optical setup is shown in Ref. 11.

Fig. 10
Fig. 10

Experimental setup utilized to confirm the existence of a locally excited SPP.

Fig. 11
Fig. 11

Image obtained when a microscatterer is scanned over the beam spot. Incident light is polarized in the y direction.

Fig. 12
Fig. 12

Image obtained at regions of the surface where the microbead distribution is the most dense.

Tables (1)

Tables Icon

Table 1 Relative Permittivity used in the Calculation

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ksp(ω)=ωc ε1(ω)ε2(ω)ε1(ω)+ε2(ω),
klight(ω)=ωc ε2(ω).
Ep(ρ, φ)=Ei cos φ(1.07<ρ<1.075)
Es(ρ, φ)=Ei sin φ(1.07<ρ<1.075)
Ep(ρ, φ),Es(ρ, φ)=0(otherwise).
Tm(ρ)=t01m(ρ)t12m(ρ)exp[ik1z(ρ)d1]1-r10m(ρ)r12m(ρ)exp[i2k1z(ρ)d1],
m=p, s,
EρSPP(x, y, ρ, φ)=exp{i[k2x(ρ, φ)x+k2y(ρ, φ)y]}×k2xy(ρ)k2 Ep(ρ, φ)Tp(ρ),
EφSPP(x, y, ρ, φ)=exp{i[k2x(ρ, φ)x+k2y(ρ, φ)y]}×Es(ρ, φ)Ts(ρ),
EzSPP(x, y, ρ, φ)=exp{i[k2x(ρ, φ)x+k2y(ρ, φ)y]}×k2z(ρ)k2 Ep(ρ, φ)Tp(ρ),
k2=ωc ε2,
k2x(ρ, φ)=k2ρ cos φ,
k2y(ρ, φ)=k2ρ sin φ,
k2xy(ρ)=k2ρ,
k2z(ρ)=k22(1-ρ2).
ExSPP(x, y, ρ, φ)=EρSPP(x, y, ρ, φ)cos φ-EφSPP(x, y, ρ, φ)sin φ,
EySPP(x, y, ρ, φ)=EρSPP(x, y, ρ, φ)sin φ+EφSPP(x, y, ρ, φ)cos φ.
ISPP(x, y)=ExSPP(x, y, ρ, φ)ρdρdφ2+EySPP(x, y, ρ, φ)ρdρdφ2+EzSPP(x, y, ρ, φ)ρdρdφ2.

Metrics