Abstract

We report second-harmonic generation in poled microscope slides of soda-lime silicate glass. During poling a sodium precipitate appears on the glass surface on the cathode side. Evidence of sodium motion through the sample helps us to understand the inducing mechanism of the second-order nonlinearity in the poled glass. We found decay of the second-harmonic signal over time. The decay rate increases with the ambient temperature, while the residual signal depends on the poling temperature.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
    [CrossRef] [PubMed]
  2. P. G. Kazansky, A. Kamal, and P. St. J. Russell, “Erasure of thermally poled second-order nonlinearity in fused silica by electron implantation,” Opt. Lett. 18, 1141–1143 (1993).
    [CrossRef] [PubMed]
  3. P. G. Kazansky, V. Pruneri, and P. St. J. Russell, “Blue-light generation by quasi-phase-matched frequency doubling in thermally poled optical glass,” Opt. Lett. 20, 843–845 (1995).
    [CrossRef] [PubMed]
  4. K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second harmonic generation in a poled tellurite glass,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
    [CrossRef]
  5. N. Mukherjee, R. A. Myers, and S. R. J. Brueck, “Dynamics of second-harmonic generation in fused silica,” J. Opt. Soc. Am. B 11, 665–669 (1994).
    [CrossRef]
  6. H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, “Effect of poling conditions on second-harmonic generation in fused silica,” Opt. Lett. 21, 468–470 (1996).
    [CrossRef] [PubMed]
  7. L. J. Henry, “Correlation of Ge E′ defect sites with second-harmonic generation in poled high-water fused silica,” Opt. Lett. 20, 1592–1594 (1995).
    [CrossRef] [PubMed]
  8. L. J. Henry, A. D. DeVibiss, and T. E. Tsai, “Effect of preannealing on the level of second-harmonic generation and defect sites achieved in poled low-water fused silica,” J. Opt. Soc. Am. B 12, 2037–2045 (1995).
    [CrossRef]
  9. H. Nasu, H. Okamoto, K. Kurachi, J. Matsuoka, K. Kamiya, and H. Hosono, “Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions,” J. Opt. Soc. Am. B 12, 644–649 (1995).
    [CrossRef]
  10. S. K. Lai, D. R. Young, J. A. Calise, and F. J. Feigl, “Reduction of electron trapping in silicon dioxide by high temperature nitrogen anneal,” J. Appl. Phys. 52, 5691–5695 (1981).
    [CrossRef]
  11. A. Okada, K. Ishii, K. Milo, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60, 2853–2855 (1992).
    [CrossRef]
  12. R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64, 1332–1334 (1992).
    [CrossRef]
  13. A. C. Liu, M. J. F. Diagonnet, and G. S. Kino, “Electro-optic phase modulation in a silice channel waveguide,” Opt. Lett. 19, 466–468 (1994).
    [CrossRef] [PubMed]
  14. W. G. Dimitriev, G. G. Gurzaidan, and D. N. Nicokogarian, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991), p. 93.
  15. Y. Ngeno, J. H. Kyung, and N. M. Lawandy, “Compositional dependence of optically encoded second-harmonic generation in pure binary lead-silicate and ternary barium borosilicate glasses,” Opt. Lett. 20, 2180–2182 (1995).
    [CrossRef]
  16. W. Olthuis and P. Bergveld, “On the charge storage and decay mechanism in silicon dioxide electrets,” IEEE Trans. Electr. Insul. 27, 691–697 (1992).
    [CrossRef]

1996

1995

1994

1993

P. G. Kazansky, A. Kamal, and P. St. J. Russell, “Erasure of thermally poled second-order nonlinearity in fused silica by electron implantation,” Opt. Lett. 18, 1141–1143 (1993).
[CrossRef] [PubMed]

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second harmonic generation in a poled tellurite glass,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

1992

A. Okada, K. Ishii, K. Milo, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60, 2853–2855 (1992).
[CrossRef]

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64, 1332–1334 (1992).
[CrossRef]

W. Olthuis and P. Bergveld, “On the charge storage and decay mechanism in silicon dioxide electrets,” IEEE Trans. Electr. Insul. 27, 691–697 (1992).
[CrossRef]

1991

1981

S. K. Lai, D. R. Young, J. A. Calise, and F. J. Feigl, “Reduction of electron trapping in silicon dioxide by high temperature nitrogen anneal,” J. Appl. Phys. 52, 5691–5695 (1981).
[CrossRef]

Bergveld, P.

W. Olthuis and P. Bergveld, “On the charge storage and decay mechanism in silicon dioxide electrets,” IEEE Trans. Electr. Insul. 27, 691–697 (1992).
[CrossRef]

Brueck, S. R. J.

Calise, J. A.

S. K. Lai, D. R. Young, J. A. Calise, and F. J. Feigl, “Reduction of electron trapping in silicon dioxide by high temperature nitrogen anneal,” J. Appl. Phys. 52, 5691–5695 (1981).
[CrossRef]

DeVibiss, A. D.

Diagonnet, M. J. F.

Feigl, F. J.

S. K. Lai, D. R. Young, J. A. Calise, and F. J. Feigl, “Reduction of electron trapping in silicon dioxide by high temperature nitrogen anneal,” J. Appl. Phys. 52, 5691–5695 (1981).
[CrossRef]

Henry, L. J.

Hirao, K.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second harmonic generation in a poled tellurite glass,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

Hosono, H.

Ishii, K.

A. Okada, K. Ishii, K. Milo, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60, 2853–2855 (1992).
[CrossRef]

Kamal, A.

Kamiya, K.

Kashima, K.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second harmonic generation in a poled tellurite glass,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

Kashyap, R.

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64, 1332–1334 (1992).
[CrossRef]

Kazansky, P. G.

Kino, G. S.

Kurachi, K.

Kyung, J. H.

Lai, S. K.

S. K. Lai, D. R. Young, J. A. Calise, and F. J. Feigl, “Reduction of electron trapping in silicon dioxide by high temperature nitrogen anneal,” J. Appl. Phys. 52, 5691–5695 (1981).
[CrossRef]

Lawandy, N. M.

Liu, A. C.

Matsuoka, J.

Mckee, P. F.

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64, 1332–1334 (1992).
[CrossRef]

Milo, K.

A. Okada, K. Ishii, K. Milo, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60, 2853–2855 (1992).
[CrossRef]

Mito, A.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second harmonic generation in a poled tellurite glass,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

Morinaga, K.

Mukherjee, N.

Myers, R. A.

Nasu, H.

Ngeno, Y.

Okada, A.

A. Okada, K. Ishii, K. Milo, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60, 2853–2855 (1992).
[CrossRef]

Okamoto, H.

Olthuis, W.

W. Olthuis and P. Bergveld, “On the charge storage and decay mechanism in silicon dioxide electrets,” IEEE Trans. Electr. Insul. 27, 691–697 (1992).
[CrossRef]

Pruneri, V.

Rogers, D. C.

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64, 1332–1334 (1992).
[CrossRef]

Russell, P. St. J.

Sasaki, K.

A. Okada, K. Ishii, K. Milo, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60, 2853–2855 (1992).
[CrossRef]

Soga, N.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second harmonic generation in a poled tellurite glass,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

Takebe, H.

Tanaka, K.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second harmonic generation in a poled tellurite glass,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

Tsai, T. E.

Veldhuis, G. J.

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64, 1332–1334 (1992).
[CrossRef]

Young, D. R.

S. K. Lai, D. R. Young, J. A. Calise, and F. J. Feigl, “Reduction of electron trapping in silicon dioxide by high temperature nitrogen anneal,” J. Appl. Phys. 52, 5691–5695 (1981).
[CrossRef]

Appl. Phys. Lett.

A. Okada, K. Ishii, K. Milo, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60, 2853–2855 (1992).
[CrossRef]

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64, 1332–1334 (1992).
[CrossRef]

IEEE Trans. Electr. Insul.

W. Olthuis and P. Bergveld, “On the charge storage and decay mechanism in silicon dioxide electrets,” IEEE Trans. Electr. Insul. 27, 691–697 (1992).
[CrossRef]

J. Appl. Phys.

S. K. Lai, D. R. Young, J. A. Calise, and F. J. Feigl, “Reduction of electron trapping in silicon dioxide by high temperature nitrogen anneal,” J. Appl. Phys. 52, 5691–5695 (1981).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys., Part 2

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second harmonic generation in a poled tellurite glass,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

Opt. Lett.

Other

W. G. Dimitriev, G. G. Gurzaidan, and D. N. Nicokogarian, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991), p. 93.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Microscope picture of an area of 550 μm × 770 μm of the film appearing on the cathode-side surface of the poled soda-lime glass. The poling temperature was 350 °C.

Fig. 2
Fig. 2

(a) Time decay of SH signal of poled soda-lime glass slides in environmental temperatures of 25 and -7 °C, respectively, and at 40% relative humidity. The poling temperature was 350 °C, and the sample was washed with water. (b) Damping rate versus the SH signal for the two cases in (a).

Fig. 3
Fig. 3

SH signal at given time intervals after poling for soda-lime samples poled at various temperatures. The glasses remained at 25 °C and 40% relative humidity.

Tables (2)

Tables Icon

Table 1 Electrical Resistivity of the Soda-Lime Silicate Glass at Various Temperatures

Tables Icon

Table 2 Relative SH Signal for Different Etching Depths at the Anode Side of a Poled Glass Slide a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S(t)=S(0)exp[-(t/τ)β]

Metrics