Abstract

A compact photorefractive optical novelty filter is presented. Its two main components, the nonlinear photorefractive crystal and the spatial light modulator, are characterized. It is shown that, for this application, the involved BaTiO3:Co crystal is more efficient than a nominally undoped BaTiO3. It is demonstrated that the spatial light modulator alters the wave-mixing performance. The cut frequency of a cyclic event detection is measured versus the incident intensity. The agreement with previously developed theories about edge-enhancement characteristics is satisfactory.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  2. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory system,” Opt. Lett. 21, 896–898 (1996).
    [CrossRef] [PubMed]
  3. D. Z. Anderson, D. M. Lininger, and J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
    [CrossRef] [PubMed]
  4. N. S. Kwong, Y. Tamita, and A. Yariv, “Optical tracking filter using transient energy coupling,” J. Opt. Soc. Am. B 5, 1788–1791 (1988).
    [CrossRef]
  5. J. E. Ford, Y. Fainman, and S. H. Lee, “Time integrating interferometry using photorefractive fan out,” Opt. Lett. 13, 856–858 (1988).
    [CrossRef] [PubMed]
  6. D. Z. Anderson and J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
    [CrossRef]
  7. J. A. Khoury, G. Hussain, and R. W. Eason, “Optical tracking and motion detection using photorefractive detection using photorefractive Bi12SiO20,” Opt. Commun. 71, 138–144 (1989).
    [CrossRef]
  8. H. Rehn, R. Kowarschik, and K. H. Ringhofer, “Beam-fanning novelty filter with enhanced dynamic phase resolution,” Appl. Opt. 34, 4907–4911 (1995).
    [CrossRef] [PubMed]
  9. M. Esselbach, A. Kiessling, H. Rehn, B. Fleck, and R. Kowarschik, “Transient phase measurement using a selfpumped phase-conjugate mirror as an optical-novelty filter,” J. Opt. Soc. Am. B 14, 846–851 (1997).
    [CrossRef]
  10. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I and II,” Ferroelectrics 22, 949–964 (1979).
    [CrossRef]
  11. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  12. Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
    [CrossRef]
  13. P. Mathey, P. Jullien, A. Dazzi, and B. Mazué, “Performance evaluation of a photorefractive novelty filter for motion tracking and edge enhancement,” Opt. Commun. 129, 301–310 (1996).
    [CrossRef]
  14. V. Grubsky, S. MacCormack, and J. Feinberg, “All-optical three-dimensional mapping of 180° domains hidden in a BaTiO3 crystal,” Opt. Lett. 21, 6–8 (1996).
    [CrossRef] [PubMed]
  15. F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387–390 (1983).
    [CrossRef]
  16. G. D. Bacher, M. P. Chiao, G. J. Dunning, M. B. Klein, and B. A. Wechsler, “Ultralong dark decay measurements in BaTiO3,” in Topical Meeting on Nonlinear Optics (Optical Society of America, Washington, D.C., 1995), paper TA2, pp. 244–246.
  17. J. Y. Chang, M. H. Garrett, P. Tayebati, H. P. Jenssen, and C. Warde, “Light-induced dark decay and sublinear intensity dependence of the response time in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 12, 248–254 (1995).
    [CrossRef]
  18. S. Ducharme and J. Feinberg, “Speed of the photorefractive effect in a BaTiO3 single crystal,” J. Appl. Phys. 56, 839–842 (1984).
    [CrossRef]
  19. L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, 89–93 (1989).
    [CrossRef]
  20. G. A. Brost, R. A. Motes, and J. R. Rotge, “Intensity-dependent absorption and photorefractive effects in barium titanate,” J. Opt. Soc. Am. B 5, 1879–1885 (1988).
    [CrossRef]
  21. D. Rytz, B. A. Wechsler, M. H. Garrett, C. C. Nelson, and R. N. Schwartz, “Photorefractive properties of BaTiO3:Co,” J. Opt. Soc. Am. B 7, 2245–2254 (1990).
    [CrossRef]
  22. M. Cronin-Golomb, A. M. Biernacki, C. Lin, and H. Kong, “Photorefractive time differentiation of coherent optical images,” Opt. Lett. 12, 1029–1031 (1987).
    [CrossRef] [PubMed]
  23. M. Sedlatschek, T. Rauch, C. Denz, and T. Tschudi, “Generalized theory of the resolution of object tracking novelty filters,” Opt. Commun. 116, 25–30 (1995).
    [CrossRef]
  24. D. T. H. Liu and L. J. Cheng, “Resolution of a target-tracking optical novelty filter,” Opt. Eng. 30, 571–576 (1991).
    [CrossRef]
  25. B. Jähne, Digital Image Processing (Springer-Verlag, Berlin, 1991).

1997 (1)

1996 (3)

1995 (3)

1993 (1)

1991 (1)

D. T. H. Liu and L. J. Cheng, “Resolution of a target-tracking optical novelty filter,” Opt. Eng. 30, 571–576 (1991).
[CrossRef]

1990 (1)

1989 (3)

D. Z. Anderson and J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

J. A. Khoury, G. Hussain, and R. W. Eason, “Optical tracking and motion detection using photorefractive detection using photorefractive Bi12SiO20,” Opt. Commun. 71, 138–144 (1989).
[CrossRef]

L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, 89–93 (1989).
[CrossRef]

1988 (3)

1987 (2)

1986 (1)

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

1984 (1)

S. Ducharme and J. Feinberg, “Speed of the photorefractive effect in a BaTiO3 single crystal,” J. Appl. Phys. 56, 839–842 (1984).
[CrossRef]

1983 (1)

F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387–390 (1983).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I and II,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Albers, J.

F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387–390 (1983).
[CrossRef]

Anderson, D. Z.

D. Z. Anderson and J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

D. Z. Anderson, D. M. Lininger, and J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
[CrossRef] [PubMed]

Biernacki, A. M.

Brost, G. A.

Burr, G. W.

Chang, J. Y.

Cheng, L. J.

D. T. H. Liu and L. J. Cheng, “Resolution of a target-tracking optical novelty filter,” Opt. Eng. 30, 571–576 (1991).
[CrossRef]

Cronin-Golomb, M.

Dazzi, A.

P. Mathey, P. Jullien, A. Dazzi, and B. Mazué, “Performance evaluation of a photorefractive novelty filter for motion tracking and edge enhancement,” Opt. Commun. 129, 301–310 (1996).
[CrossRef]

Denz, C.

M. Sedlatschek, T. Rauch, C. Denz, and T. Tschudi, “Generalized theory of the resolution of object tracking novelty filters,” Opt. Commun. 116, 25–30 (1995).
[CrossRef]

Ducharme, S.

S. Ducharme and J. Feinberg, “Speed of the photorefractive effect in a BaTiO3 single crystal,” J. Appl. Phys. 56, 839–842 (1984).
[CrossRef]

Eason, R. W.

J. A. Khoury, G. Hussain, and R. W. Eason, “Optical tracking and motion detection using photorefractive detection using photorefractive Bi12SiO20,” Opt. Commun. 71, 138–144 (1989).
[CrossRef]

Esselbach, M.

Fainman, Y.

J. E. Ford, Y. Fainman, and S. H. Lee, “Time integrating interferometry using photorefractive fan out,” Opt. Lett. 13, 856–858 (1988).
[CrossRef] [PubMed]

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Feinberg, J.

V. Grubsky, S. MacCormack, and J. Feinberg, “All-optical three-dimensional mapping of 180° domains hidden in a BaTiO3 crystal,” Opt. Lett. 21, 6–8 (1996).
[CrossRef] [PubMed]

D. Z. Anderson and J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

D. Z. Anderson, D. M. Lininger, and J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
[CrossRef] [PubMed]

S. Ducharme and J. Feinberg, “Speed of the photorefractive effect in a BaTiO3 single crystal,” J. Appl. Phys. 56, 839–842 (1984).
[CrossRef]

Fleck, B.

Ford, J. E.

Garrett, M. H.

Grubsky, V.

Holtmann, L.

L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, 89–93 (1989).
[CrossRef]

Hussain, G.

J. A. Khoury, G. Hussain, and R. W. Eason, “Optical tracking and motion detection using photorefractive detection using photorefractive Bi12SiO20,” Opt. Commun. 71, 138–144 (1989).
[CrossRef]

Jenssen, H. P.

Jullien, P.

P. Mathey, P. Jullien, A. Dazzi, and B. Mazué, “Performance evaluation of a photorefractive novelty filter for motion tracking and edge enhancement,” Opt. Commun. 129, 301–310 (1996).
[CrossRef]

Khoury, J. A.

J. A. Khoury, G. Hussain, and R. W. Eason, “Optical tracking and motion detection using photorefractive detection using photorefractive Bi12SiO20,” Opt. Commun. 71, 138–144 (1989).
[CrossRef]

Kiessling, A.

Klancnik, E.

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kong, H.

Kowarschik, R.

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I and II,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Kwong, N. S.

Laeri, F.

F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387–390 (1983).
[CrossRef]

Lee, S. H.

J. E. Ford, Y. Fainman, and S. H. Lee, “Time integrating interferometry using photorefractive fan out,” Opt. Lett. 13, 856–858 (1988).
[CrossRef] [PubMed]

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Lin, C.

Lininger, D. M.

Liu, D. T. H.

D. T. H. Liu and L. J. Cheng, “Resolution of a target-tracking optical novelty filter,” Opt. Eng. 30, 571–576 (1991).
[CrossRef]

MacCormack, S.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I and II,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Mathey, P.

P. Mathey, P. Jullien, A. Dazzi, and B. Mazué, “Performance evaluation of a photorefractive novelty filter for motion tracking and edge enhancement,” Opt. Commun. 129, 301–310 (1996).
[CrossRef]

Mazué, B.

P. Mathey, P. Jullien, A. Dazzi, and B. Mazué, “Performance evaluation of a photorefractive novelty filter for motion tracking and edge enhancement,” Opt. Commun. 129, 301–310 (1996).
[CrossRef]

Mok, F. H.

Motes, R. A.

Nelson, C. C.

Odoulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I and II,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Psaltis, D.

Rauch, T.

M. Sedlatschek, T. Rauch, C. Denz, and T. Tschudi, “Generalized theory of the resolution of object tracking novelty filters,” Opt. Commun. 116, 25–30 (1995).
[CrossRef]

Rehn, H.

Ringhofer, K. H.

Rotge, J. R.

Rytz, D.

Schwartz, R. N.

Sedlatschek, M.

M. Sedlatschek, T. Rauch, C. Denz, and T. Tschudi, “Generalized theory of the resolution of object tracking novelty filters,” Opt. Commun. 116, 25–30 (1995).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I and II,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Tamita, Y.

Tayebati, P.

Tschudi, T.

M. Sedlatschek, T. Rauch, C. Denz, and T. Tschudi, “Generalized theory of the resolution of object tracking novelty filters,” Opt. Commun. 116, 25–30 (1995).
[CrossRef]

F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387–390 (1983).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I and II,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Warde, C.

Wechsler, B. A.

Yariv, A.

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I and II,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Z. Anderson and J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

J. Appl. Phys. (1)

S. Ducharme and J. Feinberg, “Speed of the photorefractive effect in a BaTiO3 single crystal,” J. Appl. Phys. 56, 839–842 (1984).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Commun. (4)

F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387–390 (1983).
[CrossRef]

P. Mathey, P. Jullien, A. Dazzi, and B. Mazué, “Performance evaluation of a photorefractive novelty filter for motion tracking and edge enhancement,” Opt. Commun. 129, 301–310 (1996).
[CrossRef]

J. A. Khoury, G. Hussain, and R. W. Eason, “Optical tracking and motion detection using photorefractive detection using photorefractive Bi12SiO20,” Opt. Commun. 71, 138–144 (1989).
[CrossRef]

M. Sedlatschek, T. Rauch, C. Denz, and T. Tschudi, “Generalized theory of the resolution of object tracking novelty filters,” Opt. Commun. 116, 25–30 (1995).
[CrossRef]

Opt. Eng. (2)

D. T. H. Liu and L. J. Cheng, “Resolution of a target-tracking optical novelty filter,” Opt. Eng. 30, 571–576 (1991).
[CrossRef]

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Opt. Lett. (6)

Phys. Status Solidi A (1)

L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, 89–93 (1989).
[CrossRef]

Other (2)

B. Jähne, Digital Image Processing (Springer-Verlag, Berlin, 1991).

G. D. Bacher, M. P. Chiao, G. J. Dunning, M. B. Klein, and B. A. Wechsler, “Ultralong dark decay measurements in BaTiO3,” in Topical Meeting on Nonlinear Optics (Optical Society of America, Washington, D.C., 1995), paper TA2, pp. 244–246.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental arrangement of the photorefractive novelty filter: P, polarizer; PCB, polarizing cube beam splitter; λ/2, half-wave plate; L1, L2, lenses; Ph, photodetector; SLM, spatial light modulator; PRC, photorefractive crystal.

Fig. 2
Fig. 2

Interference pattern obtained with a Mach–Zehnder interferometer (a) without the SLM and (b) in the presence of the totally transmissive SLM. The size of a pixel of the SLM on these interferograms is 0.53 mm (horizontal) × 0.56 mm (vertical).

Fig. 3
Fig. 3

Comparison of the depletion efficiencies versus the pump–signal ratio for the undoped barium titanate (♦) and for the cobalt-doped crystal (○). The lines are guides for the eye.

Fig. 4
Fig. 4

Dependence of the response time τ versus the total incident intensity I for the undoped BaTiO3 (♦) and for the BaTiO3:Co samples (•). The two straight lines are the fit functions of the experimental data.

Fig. 5
Fig. 5

Comparison of the depletion efficiencies versus the pump–signal ratio for the BaTiO3: Co sample with the totally transmissive SLM put on the signal beam (♦) and without the SLM (○). The lines joining the symbols are guides for the eye.

Fig. 6
Fig. 6

Set of images addressed to the SLM to test the depletion efficiency and the response time.

Fig. 7
Fig. 7

Image sequences with two different initial states investigated for the cyclic novelty detection.

Fig. 8
Fig. 8

Temporal variations of the transmitted signal beam (solid curve) when a white square periodically flickers on the signal beam with (a) the initial state depicted in Fig. 7(a) and (b) the initial state drawn in Fig. 7(b).

Fig. 9
Fig. 9

Cut frequency of the white square disappearance versus in the incident intensity for the initial state drawn in Fig. 7(a) (•) and that in Fig. 7(b) (○).

Fig. 10
Fig. 10

(a) Input scene displayed by the SLM at the entrance of the optical photorefractive novelty filter. (b) Corresponding output processed image at the exit of the novelty filter. (c) Intensity profile taken in Fig. 10(b) and characterized by a trailing edge Lt. (d) Numerically processed image by means of contour generation.

Fig. 11
Fig. 11

Linear dependence of the trailing edge Lt versus the bar velocity for five intensities: I=73 mW/cm2 (□), I=145 mW/cm2 (×), I=218 mW/cm2 (▼), I=291 mW/cm2 (♦), and I=363 mW/cm2 (•).

Fig. 12
Fig. 12

(a) Input image combining an horizontal bar and a vertical bar. The resulting object moves diagonally. (b) Output image captured at the exit of the optical photorefractive novelty filter.

Tables (2)

Tables Icon

Table 1 Depletion Efficiencies and Response Times Obtained with BaTiO3: Co Crystal at Two Fixed Incident Intensities, when the Set of Images Drawn in Fig. 6 is Sent to the Spatial Light Modulator

Tables Icon

Table 2 Comparison of the Trail Lengths L Calculated from Two Individual Bars with the Values Lt Extracted from Image Profiles of the Diagonally Moving Object

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

reff=r13n04 cos β sin αs sin αp+r33ne4 cos β cos αp cos αs+r42ne2n02 sin β sin 2β,
η=100×1-IsIs0,

Metrics