Abstract

Spectral and temporal characteristics of light-induced absorption for an undoped and a Rh-doped as-grown BaTiO3 crystal were investigated and compared. Two dark-decay time constants corresponding to two shallow levels were observed: 40 ms and 1.2 s for undoped BaTiO3 and 39 ms and 3.4 s for Rh-doped BaTiO3. The light-induced absorption spectra were resolved into two components according to the dark-decay time constants. The resolved spectra reveal that one shallow level in Rh-doped BaTiO3 and one in undoped BaTiO3 are caused by a same impurity defect. The thermal activation energies of these levels were determined to be 0.53 and 0.7 eV for undoped BaTiO3 and 0.57 and 0.8 eV for Rh-doped BaTiO3. The 0.8-eV shallow level in BaTiO3:Rh is caused by Rh4+/5+; the other level, 0.57 eV, is the one that has the same defect origin as the 0.53 eV level in undoped BaTiO3. Other parameters for the shallow levels are also given.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Motes and J. J. Kim, “Intensity-dependent absorption coefficient in photorefractive BaTiO3 crystals,” J. Opt. Soc. Am. B 4, 1397 (1987).
    [CrossRef]
  2. G. A. Brost, R. A. Motes, and J. R. Rotgé, “Intensity-dependent absorption and photorefractive effects in barium titanate,” J. Opt. Soc. Am. B 5, 1879 (1988).
    [CrossRef]
  3. D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 195 (1990).
    [CrossRef]
  4. G. A. Brost and R. A. Motes, “Origin of the sublinear photorefractive response time in BaTiO3,” Opt. Lett. 15, 1194 (1990).
    [CrossRef] [PubMed]
  5. L. Holtmann, M. Unland, E. Krätzig, and G. Godefroy, “Conductivity and light-induced absorption in BaTiO3,” Appl. Phys. A 51, 13 (1990).
    [CrossRef]
  6. P. Tayebati and D. Mahgerefteh, “Theory of the photorefractive effects for Bi12SiO20 and BaTiO3 with shallow traps,” J. Opt. Soc. Am. B 8, 1053 (1991).
    [CrossRef]
  7. K. Buse, J. Freglich, G. Kuper, and E. Krätzig, “Dark building up of holograms in BaTiO3 after recording,” Appl. Phys. A 57, 437 (1993).
    [CrossRef]
  8. A. Motes, G. Brost, and J. Rotgé, “Temporal behavior of the intensity-dependent absorption in photorefractive BaTiO3,” Opt. Lett. 13, 509 (1988).
    [CrossRef] [PubMed]
  9. G. A. Brost and R. A. Motes, “Photoinduced absorption in photorefractive BaTiO3,” Opt. Lett. 15, 538 (1990).
    [CrossRef] [PubMed]
  10. P. Ye, A. Blouin, C. Demers, M. D. Roberge, and X. Wu, “Picosecond optical absorption in BaTiO3:Fe,” Opt. Lett. 16, 980 (1991).
    [CrossRef] [PubMed]
  11. D. A. Temple and C. Warde, “Photoinduced optical absorption in BaTiO3:Fe,” Appl. Phys. Lett. 59, 4 (1991).
    [CrossRef]
  12. R. S. Cudney, R. M. Pierce, G. D. Bacher, and J. Feinberg, “Absorption gratings in photorefractive crystals with multiple levels,” J. Opt. Soc. Am. B 8, 1326 (1991).
    [CrossRef]
  13. K. Buse and E. Krätzig, “Light induced absorption in BaTiO3 and KNbO3 generated with high intensity laser pulses,” Opt. Mater. 1, 165 (1992).
    [CrossRef]
  14. M. H. Garret, P. Tayebati, J. Y. Chang, H. P. Jenssen, and C. Warde, “Shallow-trap-induced positive absorptive two beam coupling gain and light-induced transparence in nominally undoped barium titanate,” J. Appl. Phys. 72, 1965 (1986).
    [CrossRef]
  15. R. A. Rupp and F. W. Drees, “Light-induced scattering in photorefractive crystals,” Appl. Phys. B 39, 223 (1986).
    [CrossRef]
  16. K. Buse and T. Bierwirth, “Dynamics of light induced absorption in BaTiO3 and application for intensity stabilization,” J. Opt. Soc. Am. B 12, 629 (1995).
    [CrossRef]
  17. H. Krose, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B 61, 1 (1995).
    [CrossRef]
  18. K. Buse and E. Krätzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B 61, 27 (1995).
    [CrossRef]
  19. U. van Stevendaal, K. Buse, S. Kämper, H. Hesse, and E. Krätzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B 63, 315 (1996).
    [CrossRef]

1996 (1)

U. van Stevendaal, K. Buse, S. Kämper, H. Hesse, and E. Krätzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B 63, 315 (1996).
[CrossRef]

1995 (3)

K. Buse and T. Bierwirth, “Dynamics of light induced absorption in BaTiO3 and application for intensity stabilization,” J. Opt. Soc. Am. B 12, 629 (1995).
[CrossRef]

H. Krose, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B 61, 1 (1995).
[CrossRef]

K. Buse and E. Krätzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B 61, 27 (1995).
[CrossRef]

1993 (1)

K. Buse, J. Freglich, G. Kuper, and E. Krätzig, “Dark building up of holograms in BaTiO3 after recording,” Appl. Phys. A 57, 437 (1993).
[CrossRef]

1992 (1)

K. Buse and E. Krätzig, “Light induced absorption in BaTiO3 and KNbO3 generated with high intensity laser pulses,” Opt. Mater. 1, 165 (1992).
[CrossRef]

1991 (4)

1990 (4)

G. A. Brost and R. A. Motes, “Photoinduced absorption in photorefractive BaTiO3,” Opt. Lett. 15, 538 (1990).
[CrossRef] [PubMed]

G. A. Brost and R. A. Motes, “Origin of the sublinear photorefractive response time in BaTiO3,” Opt. Lett. 15, 1194 (1990).
[CrossRef] [PubMed]

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 195 (1990).
[CrossRef]

L. Holtmann, M. Unland, E. Krätzig, and G. Godefroy, “Conductivity and light-induced absorption in BaTiO3,” Appl. Phys. A 51, 13 (1990).
[CrossRef]

1988 (2)

1987 (1)

1986 (2)

M. H. Garret, P. Tayebati, J. Y. Chang, H. P. Jenssen, and C. Warde, “Shallow-trap-induced positive absorptive two beam coupling gain and light-induced transparence in nominally undoped barium titanate,” J. Appl. Phys. 72, 1965 (1986).
[CrossRef]

R. A. Rupp and F. W. Drees, “Light-induced scattering in photorefractive crystals,” Appl. Phys. B 39, 223 (1986).
[CrossRef]

Bacher, G. D.

Bierwirth, T.

Blouin, A.

Brost, G.

Brost, G. A.

Buse, K.

U. van Stevendaal, K. Buse, S. Kämper, H. Hesse, and E. Krätzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B 63, 315 (1996).
[CrossRef]

K. Buse and E. Krätzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B 61, 27 (1995).
[CrossRef]

K. Buse and T. Bierwirth, “Dynamics of light induced absorption in BaTiO3 and application for intensity stabilization,” J. Opt. Soc. Am. B 12, 629 (1995).
[CrossRef]

K. Buse, J. Freglich, G. Kuper, and E. Krätzig, “Dark building up of holograms in BaTiO3 after recording,” Appl. Phys. A 57, 437 (1993).
[CrossRef]

K. Buse and E. Krätzig, “Light induced absorption in BaTiO3 and KNbO3 generated with high intensity laser pulses,” Opt. Mater. 1, 165 (1992).
[CrossRef]

Chang, J. Y.

M. H. Garret, P. Tayebati, J. Y. Chang, H. P. Jenssen, and C. Warde, “Shallow-trap-induced positive absorptive two beam coupling gain and light-induced transparence in nominally undoped barium titanate,” J. Appl. Phys. 72, 1965 (1986).
[CrossRef]

Cudney, R. S.

Demers, C.

Drees, F. W.

R. A. Rupp and F. W. Drees, “Light-induced scattering in photorefractive crystals,” Appl. Phys. B 39, 223 (1986).
[CrossRef]

Feinberg, J.

R. S. Cudney, R. M. Pierce, G. D. Bacher, and J. Feinberg, “Absorption gratings in photorefractive crystals with multiple levels,” J. Opt. Soc. Am. B 8, 1326 (1991).
[CrossRef]

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 195 (1990).
[CrossRef]

Freglich, J.

K. Buse, J. Freglich, G. Kuper, and E. Krätzig, “Dark building up of holograms in BaTiO3 after recording,” Appl. Phys. A 57, 437 (1993).
[CrossRef]

Garret, M. H.

M. H. Garret, P. Tayebati, J. Y. Chang, H. P. Jenssen, and C. Warde, “Shallow-trap-induced positive absorptive two beam coupling gain and light-induced transparence in nominally undoped barium titanate,” J. Appl. Phys. 72, 1965 (1986).
[CrossRef]

Godefroy, G.

L. Holtmann, M. Unland, E. Krätzig, and G. Godefroy, “Conductivity and light-induced absorption in BaTiO3,” Appl. Phys. A 51, 13 (1990).
[CrossRef]

Hesse, H.

U. van Stevendaal, K. Buse, S. Kämper, H. Hesse, and E. Krätzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B 63, 315 (1996).
[CrossRef]

H. Krose, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B 61, 1 (1995).
[CrossRef]

Holtmann, L.

L. Holtmann, M. Unland, E. Krätzig, and G. Godefroy, “Conductivity and light-induced absorption in BaTiO3,” Appl. Phys. A 51, 13 (1990).
[CrossRef]

Jenssen, H. P.

M. H. Garret, P. Tayebati, J. Y. Chang, H. P. Jenssen, and C. Warde, “Shallow-trap-induced positive absorptive two beam coupling gain and light-induced transparence in nominally undoped barium titanate,” J. Appl. Phys. 72, 1965 (1986).
[CrossRef]

Kämper, S.

U. van Stevendaal, K. Buse, S. Kämper, H. Hesse, and E. Krätzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B 63, 315 (1996).
[CrossRef]

Kim, J. J.

Krätzig, E.

U. van Stevendaal, K. Buse, S. Kämper, H. Hesse, and E. Krätzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B 63, 315 (1996).
[CrossRef]

K. Buse and E. Krätzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B 61, 27 (1995).
[CrossRef]

K. Buse, J. Freglich, G. Kuper, and E. Krätzig, “Dark building up of holograms in BaTiO3 after recording,” Appl. Phys. A 57, 437 (1993).
[CrossRef]

K. Buse and E. Krätzig, “Light induced absorption in BaTiO3 and KNbO3 generated with high intensity laser pulses,” Opt. Mater. 1, 165 (1992).
[CrossRef]

L. Holtmann, M. Unland, E. Krätzig, and G. Godefroy, “Conductivity and light-induced absorption in BaTiO3,” Appl. Phys. A 51, 13 (1990).
[CrossRef]

Krose, H.

H. Krose, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B 61, 1 (1995).
[CrossRef]

Kuper, G.

K. Buse, J. Freglich, G. Kuper, and E. Krätzig, “Dark building up of holograms in BaTiO3 after recording,” Appl. Phys. A 57, 437 (1993).
[CrossRef]

Mahgerefteh, D.

P. Tayebati and D. Mahgerefteh, “Theory of the photorefractive effects for Bi12SiO20 and BaTiO3 with shallow traps,” J. Opt. Soc. Am. B 8, 1053 (1991).
[CrossRef]

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 195 (1990).
[CrossRef]

Motes, A.

Motes, R. A.

Pierce, R. M.

Roberge, M. D.

Rotgé, J.

Rotgé, J. R.

Rupp, R. A.

R. A. Rupp and F. W. Drees, “Light-induced scattering in photorefractive crystals,” Appl. Phys. B 39, 223 (1986).
[CrossRef]

Scharfschwerdt, R.

H. Krose, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B 61, 1 (1995).
[CrossRef]

Schirmer, O. F.

H. Krose, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B 61, 1 (1995).
[CrossRef]

Tayebati, P.

P. Tayebati and D. Mahgerefteh, “Theory of the photorefractive effects for Bi12SiO20 and BaTiO3 with shallow traps,” J. Opt. Soc. Am. B 8, 1053 (1991).
[CrossRef]

M. H. Garret, P. Tayebati, J. Y. Chang, H. P. Jenssen, and C. Warde, “Shallow-trap-induced positive absorptive two beam coupling gain and light-induced transparence in nominally undoped barium titanate,” J. Appl. Phys. 72, 1965 (1986).
[CrossRef]

Temple, D. A.

D. A. Temple and C. Warde, “Photoinduced optical absorption in BaTiO3:Fe,” Appl. Phys. Lett. 59, 4 (1991).
[CrossRef]

Unland, M.

L. Holtmann, M. Unland, E. Krätzig, and G. Godefroy, “Conductivity and light-induced absorption in BaTiO3,” Appl. Phys. A 51, 13 (1990).
[CrossRef]

van Stevendaal, U.

U. van Stevendaal, K. Buse, S. Kämper, H. Hesse, and E. Krätzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B 63, 315 (1996).
[CrossRef]

Warde, C.

D. A. Temple and C. Warde, “Photoinduced optical absorption in BaTiO3:Fe,” Appl. Phys. Lett. 59, 4 (1991).
[CrossRef]

M. H. Garret, P. Tayebati, J. Y. Chang, H. P. Jenssen, and C. Warde, “Shallow-trap-induced positive absorptive two beam coupling gain and light-induced transparence in nominally undoped barium titanate,” J. Appl. Phys. 72, 1965 (1986).
[CrossRef]

Wu, X.

Ye, P.

Appl. Phys. A (2)

L. Holtmann, M. Unland, E. Krätzig, and G. Godefroy, “Conductivity and light-induced absorption in BaTiO3,” Appl. Phys. A 51, 13 (1990).
[CrossRef]

K. Buse, J. Freglich, G. Kuper, and E. Krätzig, “Dark building up of holograms in BaTiO3 after recording,” Appl. Phys. A 57, 437 (1993).
[CrossRef]

Appl. Phys. B (4)

R. A. Rupp and F. W. Drees, “Light-induced scattering in photorefractive crystals,” Appl. Phys. B 39, 223 (1986).
[CrossRef]

H. Krose, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B 61, 1 (1995).
[CrossRef]

K. Buse and E. Krätzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B 61, 27 (1995).
[CrossRef]

U. van Stevendaal, K. Buse, S. Kämper, H. Hesse, and E. Krätzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B 63, 315 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

D. A. Temple and C. Warde, “Photoinduced optical absorption in BaTiO3:Fe,” Appl. Phys. Lett. 59, 4 (1991).
[CrossRef]

J. Appl. Phys. (1)

M. H. Garret, P. Tayebati, J. Y. Chang, H. P. Jenssen, and C. Warde, “Shallow-trap-induced positive absorptive two beam coupling gain and light-induced transparence in nominally undoped barium titanate,” J. Appl. Phys. 72, 1965 (1986).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Lett. (4)

Opt. Mater. (1)

K. Buse and E. Krätzig, “Light induced absorption in BaTiO3 and KNbO3 generated with high intensity laser pulses,” Opt. Mater. 1, 165 (1992).
[CrossRef]

Phys. Rev. Lett. (1)

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 195 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the three-level (one deep and two shallow levels) charge-transport model for p-type BaTiO3. CB, conduction band; VB, valence band.

Fig. 2
Fig. 2

Steady-state light-induced absorption change αli versus probe photon energy hν. The wavelength of the pump light (λpump) is 514 nm; the pump intensity I is 500 mW/cm2. Inset, experimental arrangement for the measurement of light-induced absorption. The c axis of the crystal comes out of the paper.

Fig. 3
Fig. 3

Typical dark-decay processes of normalized light-induced absorption change αli at different probe wavelengths in undoped BaTiO3. The pump light (I=500 mW/cm2, λpum=514 nm) was blocked at t=0.

Fig. 4
Fig. 4

Typical dark-decay processes of light-induced absorption change αli at different probe wavelengths in Rh-doped BaTiO3. The pump light (I=500 mW/cm2, λpump=514 nm) was blocked at t=0.

Fig. 5
Fig. 5

Resolved light-induced (I=500 mW/cm2, λpump=514 nm) absorption spectra for the slow and fast components, α1 and α2, in both BaTiO3 and BaTiO3:Rh. Here αli is the light-induced absorption change and hν is the probe photon energy.

Fig. 6
Fig. 6

Logarithm of the dark-decay time constant of light-induced (I=500 mW/cm2, λpump=514 nm) absorption versus inverse temperature at different probe wavelengths in BaTiO3:Rh. The thermal activation energies are Ea1=0.79 eV at 780 nm, 0.80 eV at 633 nm, 0.77eV at 458 nm, and Ea2=0.57 eV at 458 nm.

Fig. 7
Fig. 7

Logarithm of the dark-decay time constant of light-induced (I=500 mW/cm2, λpump=514 nm) absorption versus inverse temperature at different probe wavelengths in undoped BaTiO3. The thermal activation energies of the shallow levels are Ea1=0.70 eV and Ea2=0.53 eV.

Fig. 8
Fig. 8

Steady-state light-induced (λpump=514 nm) absorption change αli versus pump intensity at different probe wavelengths in BaTiO3:Rh.

Fig. 9
Fig. 9

Inverse buildup time (1/τ) of light-induced (λpump =514 nm) absorption versus pump intensity in BaTiO3:Rh.

Tables (1)

Tables Icon

Table 1 Parameters of the Charge-Transport Model for the Two Shallow Levels |1〉 and |2〉 in BaTiO3:Rh

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

dnk+/dt=-(qkskI+βk)nk++(nk-nk+)rkh
(k=0, 1, 2),
h+knk+=NC(k=0, 1, 2),
αli=k=0,1,2sk(nk-nk+).
αli(t)=α1[1-exp(-λ1t)]+α2[1-exp(-λ2t)],
α1=NCn1(s1-s0)h/λ1,
α2=NCn1(s2-s0)h/λ2,
λ1=q1s1I+β1+r1h,
λ2=q2s2I+β2+r2h.
αli(t)=α1 exp(-t/τ1)+α2 exp(-t/τ2);
βk*=βk(1+ρk)-1(k=1, 2),
ρ1=r1(n1-n1+)/[r0(n0-n0+)+r2(n2-n2+)],
ρ2=r2(n2-n2+)/[r0(n0-n0+)+r1(n1-n1+)].
αli=d-1 ln[Iprobe(pumplightoff)/Iprobe(pumplighton)],
βk*(T)=β0k* exp(-Eak/kT)(k=1, 2).
αlisknk(1+βkeμ/γkσ)-1,
σIx,
βk-1=λk=akI+βk(k=1, 2).

Metrics