Abstract

The luminescence of a neodymium-doped arsenic trisulfide planar waveguide at 1083 nm is reported. The dopant was introduced into the chalcogenide glass by ion implantation. The dopant distribution following ion implantation was predicted by molecular dynamic simulation and measured by Rutherford backscattering spectrometry. The most efficient pump wavelength was determined to be 818 nm. This observation of luminescence from rare-earth-ion implantation into chalcogenide glass, for the first time to the authors’ knowledge, suggests that this technique can be useful for rare-earth-doped devices.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Kumta and S. H. Risbud, “Review: rare-earth chalcogenides—an emerging class of optical materials,” J. Mater. Sci. 29, 1135–1158 (1994).
    [CrossRef]
  2. T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
    [CrossRef]
  3. P. W. France, Optical Fiber Lasers and Amplifiers, 1st ed. (CRC, Boca Raton, Fla., 1991), pp. 22–25.
  4. D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293–1295 (1989).
    [CrossRef]
  5. M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase-modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
    [CrossRef]
  6. K. A. Richardson, J. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and in thin film form,” submitted to Opt. Mater.
  7. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zannoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. LT-6, 953–970 (1988).
    [CrossRef]
  8. J. Wilson, G. I. Stegeman, and E. M. Wright, “Soliton switching in an erbium-doped nonlinear fiber coupler,” Opt. Lett. 16, 1653–1655 (1991).
    [CrossRef] [PubMed]
  9. Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium-doped arsenic sulfide fiber for 1.3 μm fiber amplifiers,” Appl. Phys. Lett. 65, 13–15 (1994).
    [CrossRef]
  10. J. Kirchhof, J. Kobelke, M. Scheffler, and A. Schwuchow, “As-S based materials and fibres towards efficient 1.3 μm fibre amplification,” Electron. Lett. 32, 1220–1221 (1996).
    [CrossRef]
  11. E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B 12, 1468–1474 (1995).
    [CrossRef]
  12. E. Snoeks, P. G. Kik, and Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996).
    [CrossRef]
  13. A. Belykh, L. Glebov, C. Lerminiaux, S. Lunter, M. Mikhilov, A. Plyukhin, M. Prassas, and A. Przhevuskii, “Spectral and luminescence properties of neodymium in chalcogenide glasses,” J. Non-Cryst. Solids 213&214, 238–244 (1997).
    [CrossRef]
  14. A. Mori, Y. Ohishi, T. Kanamori, and S. Sudo, “Optical amplification with neodymium-doped chalcogenide glass fiber,” Appl. Phys. Lett. 70, 1230–1232 (1997).
    [CrossRef]
  15. T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth-doped chalcogenide glass-fiber laser,” Electron. Lett. 33, 414–416 (1997).
    [CrossRef]
  16. Amorphous Materials, Inc., 3130 Benton Street, Garland, Tex. 75042–7410.
  17. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).
  18. É. J. Knystautas, “Materials analysis using high-energy ion scattering,” Vol. CR69–12 of SPIE Critical Reviews (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1997), pp. 230–250.
  19. J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995).
    [CrossRef]
  20. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 124.
  21. Ref. 20, pp. 171–172.
  22. C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broad spectral bandwidth erbium doped fibre amplifier pumped near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
    [CrossRef]
  23. P. W. France, Ref. 3, pp. 25–26.
  24. W. J. Miniscalco, “Optical and electronics properties of rare earth ions in glasses,” in Rare Earth Doped Fiber Lasers and Amplifiers, M. J. F. Digonnet, ed. (Marcel Dekker, New York, 1993), pp. 38–42.
  25. E. Maurica, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, and G. W. Baxter, “Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors,” Appl. Opt. 34, 8019–8025 (1995).
    [CrossRef]

1997 (3)

A. Belykh, L. Glebov, C. Lerminiaux, S. Lunter, M. Mikhilov, A. Plyukhin, M. Prassas, and A. Przhevuskii, “Spectral and luminescence properties of neodymium in chalcogenide glasses,” J. Non-Cryst. Solids 213&214, 238–244 (1997).
[CrossRef]

A. Mori, Y. Ohishi, T. Kanamori, and S. Sudo, “Optical amplification with neodymium-doped chalcogenide glass fiber,” Appl. Phys. Lett. 70, 1230–1232 (1997).
[CrossRef]

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth-doped chalcogenide glass-fiber laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

1996 (3)

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
[CrossRef]

E. Snoeks, P. G. Kik, and Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996).
[CrossRef]

J. Kirchhof, J. Kobelke, M. Scheffler, and A. Schwuchow, “As-S based materials and fibres towards efficient 1.3 μm fibre amplification,” Electron. Lett. 32, 1220–1221 (1996).
[CrossRef]

1995 (3)

1994 (2)

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium-doped arsenic sulfide fiber for 1.3 μm fiber amplifiers,” Appl. Phys. Lett. 65, 13–15 (1994).
[CrossRef]

P. N. Kumta and S. H. Risbud, “Review: rare-earth chalcogenides—an emerging class of optical materials,” J. Mater. Sci. 29, 1135–1158 (1994).
[CrossRef]

1992 (1)

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase-modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
[CrossRef]

1991 (1)

1989 (2)

D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293–1295 (1989).
[CrossRef]

C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broad spectral bandwidth erbium doped fibre amplifier pumped near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
[CrossRef]

1988 (1)

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zannoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. LT-6, 953–970 (1988).
[CrossRef]

Ainslie, B. J.

C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broad spectral bandwidth erbium doped fibre amplifier pumped near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
[CrossRef]

Armitage, J. R.

C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broad spectral bandwidth erbium doped fibre amplifier pumped near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
[CrossRef]

Asobe, M.

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase-modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
[CrossRef]

Atkins, C. G.

C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broad spectral bandwidth erbium doped fibre amplifier pumped near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
[CrossRef]

Baxter, G. W.

Belykh, A.

A. Belykh, L. Glebov, C. Lerminiaux, S. Lunter, M. Mikhilov, A. Plyukhin, M. Prassas, and A. Przhevuskii, “Spectral and luminescence properties of neodymium in chalcogenide glasses,” J. Non-Cryst. Solids 213&214, 238–244 (1997).
[CrossRef]

Borrelli, N. F.

D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293–1295 (1989).
[CrossRef]

Craig-Ryan, S. P.

C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broad spectral bandwidth erbium doped fibre amplifier pumped near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
[CrossRef]

Diemeer, M. B. J.

Dumbaugh, W. H.

D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293–1295 (1989).
[CrossRef]

Dussardier, B.

Finlayson, N.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zannoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. LT-6, 953–970 (1988).
[CrossRef]

Fujiura, K.

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium-doped arsenic sulfide fiber for 1.3 μm fiber amplifiers,” Appl. Phys. Lett. 65, 13–15 (1994).
[CrossRef]

Glebov, L.

A. Belykh, L. Glebov, C. Lerminiaux, S. Lunter, M. Mikhilov, A. Plyukhin, M. Prassas, and A. Przhevuskii, “Spectral and luminescence properties of neodymium in chalcogenide glasses,” J. Non-Cryst. Solids 213&214, 238–244 (1997).
[CrossRef]

Hall, D. W.

D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293–1295 (1989).
[CrossRef]

Hendriksen, B.

Heo, J.

J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995).
[CrossRef]

Hewak, D. W.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth-doped chalcogenide glass-fiber laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
[CrossRef]

Huber, G.

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
[CrossRef]

Jensen, T.

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
[CrossRef]

Kanamori, T.

A. Mori, Y. Ohishi, T. Kanamori, and S. Sudo, “Optical amplification with neodymium-doped chalcogenide glass fiber,” Appl. Phys. Lett. 70, 1230–1232 (1997).
[CrossRef]

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium-doped arsenic sulfide fiber for 1.3 μm fiber amplifiers,” Appl. Phys. Lett. 65, 13–15 (1994).
[CrossRef]

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase-modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
[CrossRef]

Kik, P. G.

E. Snoeks, P. G. Kik, and Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996).
[CrossRef]

Kirchhof, J.

J. Kirchhof, J. Kobelke, M. Scheffler, and A. Schwuchow, “As-S based materials and fibres towards efficient 1.3 μm fibre amplification,” Electron. Lett. 32, 1220–1221 (1996).
[CrossRef]

Kobelke, J.

J. Kirchhof, J. Kobelke, M. Scheffler, and A. Schwuchow, “As-S based materials and fibres towards efficient 1.3 μm fibre amplification,” Electron. Lett. 32, 1220–1221 (1996).
[CrossRef]

Kubodera, K.

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase-modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
[CrossRef]

Kumta, P. N.

P. N. Kumta and S. H. Risbud, “Review: rare-earth chalcogenides—an emerging class of optical materials,” J. Mater. Sci. 29, 1135–1158 (1994).
[CrossRef]

Lerminiaux, C.

A. Belykh, L. Glebov, C. Lerminiaux, S. Lunter, M. Mikhilov, A. Plyukhin, M. Prassas, and A. Przhevuskii, “Spectral and luminescence properties of neodymium in chalcogenide glasses,” J. Non-Cryst. Solids 213&214, 238–244 (1997).
[CrossRef]

Lunter, S.

A. Belykh, L. Glebov, C. Lerminiaux, S. Lunter, M. Mikhilov, A. Plyukhin, M. Prassas, and A. Przhevuskii, “Spectral and luminescence properties of neodymium in chalcogenide glasses,” J. Non-Cryst. Solids 213&214, 238–244 (1997).
[CrossRef]

Massicott, J. F.

C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broad spectral bandwidth erbium doped fibre amplifier pumped near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
[CrossRef]

Maurica, E.

Mikhilov, M.

A. Belykh, L. Glebov, C. Lerminiaux, S. Lunter, M. Mikhilov, A. Plyukhin, M. Prassas, and A. Przhevuskii, “Spectral and luminescence properties of neodymium in chalcogenide glasses,” J. Non-Cryst. Solids 213&214, 238–244 (1997).
[CrossRef]

Monnom, G.

Moore, R. C.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth-doped chalcogenide glass-fiber laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

Mori, A.

A. Mori, Y. Ohishi, T. Kanamori, and S. Sudo, “Optical amplification with neodymium-doped chalcogenide glass fiber,” Appl. Phys. Lett. 70, 1230–1232 (1997).
[CrossRef]

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium-doped arsenic sulfide fiber for 1.3 μm fiber amplifiers,” Appl. Phys. Lett. 65, 13–15 (1994).
[CrossRef]

Newhouse, M. A.

D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293–1295 (1989).
[CrossRef]

Ohishi, Y.

A. Mori, Y. Ohishi, T. Kanamori, and S. Sudo, “Optical amplification with neodymium-doped chalcogenide glass fiber,” Appl. Phys. Lett. 70, 1230–1232 (1997).
[CrossRef]

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium-doped arsenic sulfide fiber for 1.3 μm fiber amplifiers,” Appl. Phys. Lett. 65, 13–15 (1994).
[CrossRef]

Ostrowsky, D. B.

Payne, D. N.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth-doped chalcogenide glass-fiber laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
[CrossRef]

Plyukhin, A.

A. Belykh, L. Glebov, C. Lerminiaux, S. Lunter, M. Mikhilov, A. Plyukhin, M. Prassas, and A. Przhevuskii, “Spectral and luminescence properties of neodymium in chalcogenide glasses,” J. Non-Cryst. Solids 213&214, 238–244 (1997).
[CrossRef]

Polman,

E. Snoeks, P. G. Kik, and Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996).
[CrossRef]

Polman, A.

Prassas, M.

A. Belykh, L. Glebov, C. Lerminiaux, S. Lunter, M. Mikhilov, A. Plyukhin, M. Prassas, and A. Przhevuskii, “Spectral and luminescence properties of neodymium in chalcogenide glasses,” J. Non-Cryst. Solids 213&214, 238–244 (1997).
[CrossRef]

Priolo, F.

Przhevuskii, A.

A. Belykh, L. Glebov, C. Lerminiaux, S. Lunter, M. Mikhilov, A. Plyukhin, M. Prassas, and A. Przhevuskii, “Spectral and luminescence properties of neodymium in chalcogenide glasses,” J. Non-Cryst. Solids 213&214, 238–244 (1997).
[CrossRef]

Risbud, S. H.

P. N. Kumta and S. H. Risbud, “Review: rare-earth chalcogenides—an emerging class of optical materials,” J. Mater. Sci. 29, 1135–1158 (1994).
[CrossRef]

Saïssy, A.

Samson, B. N.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth-doped chalcogenide glass-fiber laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

Scheffler, M.

J. Kirchhof, J. Kobelke, M. Scheffler, and A. Schwuchow, “As-S based materials and fibres towards efficient 1.3 μm fibre amplification,” Electron. Lett. 32, 1220–1221 (1996).
[CrossRef]

Schweizer, T.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth-doped chalcogenide glass-fiber laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
[CrossRef]

Schwuchow, A.

J. Kirchhof, J. Kobelke, M. Scheffler, and A. Schwuchow, “As-S based materials and fibres towards efficient 1.3 μm fibre amplification,” Electron. Lett. 32, 1220–1221 (1996).
[CrossRef]

Seaton, C. T.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zannoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. LT-6, 953–970 (1988).
[CrossRef]

Snoeks, E.

Stegeman, G. I.

J. Wilson, G. I. Stegeman, and E. M. Wright, “Soliton switching in an erbium-doped nonlinear fiber coupler,” Opt. Lett. 16, 1653–1655 (1991).
[CrossRef] [PubMed]

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zannoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. LT-6, 953–970 (1988).
[CrossRef]

Sudo, S.

A. Mori, Y. Ohishi, T. Kanamori, and S. Sudo, “Optical amplification with neodymium-doped chalcogenide glass fiber,” Appl. Phys. Lett. 70, 1230–1232 (1997).
[CrossRef]

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium-doped arsenic sulfide fiber for 1.3 μm fiber amplifiers,” Appl. Phys. Lett. 65, 13–15 (1994).
[CrossRef]

Suzuki, K.

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase-modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
[CrossRef]

van den Hoven, G. N.

Weidman, D. L.

D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293–1295 (1989).
[CrossRef]

Wilson, J.

Wright, E. M.

J. Wilson, G. I. Stegeman, and E. M. Wright, “Soliton switching in an erbium-doped nonlinear fiber coupler,” Opt. Lett. 16, 1653–1655 (1991).
[CrossRef] [PubMed]

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zannoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. LT-6, 953–970 (1988).
[CrossRef]

Wyatt, R.

C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broad spectral bandwidth erbium doped fibre amplifier pumped near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
[CrossRef]

Zannoni, R.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zannoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. LT-6, 953–970 (1988).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293–1295 (1989).
[CrossRef]

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase-modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
[CrossRef]

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium-doped arsenic sulfide fiber for 1.3 μm fiber amplifiers,” Appl. Phys. Lett. 65, 13–15 (1994).
[CrossRef]

A. Mori, Y. Ohishi, T. Kanamori, and S. Sudo, “Optical amplification with neodymium-doped chalcogenide glass fiber,” Appl. Phys. Lett. 70, 1230–1232 (1997).
[CrossRef]

Electron. Lett. (4)

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth-doped chalcogenide glass-fiber laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

J. Kirchhof, J. Kobelke, M. Scheffler, and A. Schwuchow, “As-S based materials and fibres towards efficient 1.3 μm fibre amplification,” Electron. Lett. 32, 1220–1221 (1996).
[CrossRef]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
[CrossRef]

C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broad spectral bandwidth erbium doped fibre amplifier pumped near 1.5 μm,” Electron. Lett. 25, 910–911 (1989).
[CrossRef]

J. Lightwave Technol. (1)

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zannoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. LT-6, 953–970 (1988).
[CrossRef]

J. Mater. Sci. (1)

P. N. Kumta and S. H. Risbud, “Review: rare-earth chalcogenides—an emerging class of optical materials,” J. Mater. Sci. 29, 1135–1158 (1994).
[CrossRef]

J. Mater. Sci. Lett. (1)

J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995).
[CrossRef]

J. Non-Cryst. Solids (1)

A. Belykh, L. Glebov, C. Lerminiaux, S. Lunter, M. Mikhilov, A. Plyukhin, M. Prassas, and A. Przhevuskii, “Spectral and luminescence properties of neodymium in chalcogenide glasses,” J. Non-Cryst. Solids 213&214, 238–244 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Opt. Mater. (1)

E. Snoeks, P. G. Kik, and Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996).
[CrossRef]

Other (9)

P. W. France, Optical Fiber Lasers and Amplifiers, 1st ed. (CRC, Boca Raton, Fla., 1991), pp. 22–25.

K. A. Richardson, J. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and in thin film form,” submitted to Opt. Mater.

Amorphous Materials, Inc., 3130 Benton Street, Garland, Tex. 75042–7410.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).

É. J. Knystautas, “Materials analysis using high-energy ion scattering,” Vol. CR69–12 of SPIE Critical Reviews (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1997), pp. 230–250.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 124.

Ref. 20, pp. 171–172.

P. W. France, Ref. 3, pp. 25–26.

W. J. Miniscalco, “Optical and electronics properties of rare earth ions in glasses,” in Rare Earth Doped Fiber Lasers and Amplifiers, M. J. F. Digonnet, ed. (Marcel Dekker, New York, 1993), pp. 38–42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

RBS spectrum of a 1-μm-thick As2S3 glass layer evaporated onto an oxidized silicon wafer implanted with 4×1014 Nd+/cm2 at 100 keV. The beam used was He+ at 3 MeV. The neodymium peak is shown in the inset.

Fig. 2
Fig. 2

Fabrication of the ion-implanted waveguide: (a) deposition of 1 μm of As2S3 and neodymium implantation, (b) evaporation of a second layer of As2S3.

Fig. 3
Fig. 3

Neodymium luminescence peak intensity at 1083 nm as a function of pump wavelength. The most efficient pump wavelength is found to be 818 nm.

Fig. 4
Fig. 4

Luminescence spectrum from a neodymium-ion-implanted As2S3 planar waveguide pumped at 818 nm. The experimental band was fitted with the four Lorentzian curves shown (centered, from left to right, at 1082, 1089, 1094, and 1105 nm).

Metrics