Abstract

We investigate the polarization properties of holographic gratings in side-chain azobenzene polyesters in which an anisotropic grating that is due to photoinduced linear and circular birefringence is recorded in the volume of the material and a relief grating appears on the surface. A theoretical model is proposed to explain the experimental results, making it possible to understand the influence of the different photoinduced effects. It is shown that at low intensity the polarization properties of the diffraction at these gratings are determined by the interaction of the linear and circular photobirefringences, and at larger intensity the influence of the surface relief dominates the effect of the circular anisotropy. Owing to the high recording efficiency of the polyesters, the ±1-order diffracted waves change the polarization interference pattern during the holographic recording, resulting in the appearance of a surface relief with doubled frequency.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” Makromol. Chem. Rapid Commun. 8, 59–63 (1987).
    [CrossRef]
  2. U. Wiesner, M. Antonietti, C. Boeffel, and H. W. Spiess, “Dynamics of photoinduced isomerization of azobenzene moieties in liquid-crystalline polymers,” Makromol. Chem. 191, 2133–2149 (1990).
    [CrossRef]
  3. V. P. Shibaev, I. V. Yakolev, S. G. Kostromin, S. A. Invanov, and T. I. Sverkova, “Specific features of optical information storage in oriented films of liquid crystalline comb-like polymers by means of selective optical excitation,” Vysokomol. Soyed. A 32, 1552–1559 (1990).
  4. A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azo polymers for reversible optical storage.1.Poly[4-[[2- (acryloyoxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
    [CrossRef]
  5. Th. Fischer, L. Läsker, J. Stumpe, and S. G. Kostromin, “Photoinduced optical anisotropy in films of photochromic liquid crystalline polymers,” J. Photochem. Photobiol. A 80, 453–459 (1994).
    [CrossRef]
  6. H. H. Haitjema, G. L. von Morgen, Y. Y. Tan, and G. Challa, “Photoresponsive behavior of azobenzene-based (meth)acrylic (co)polymers in thin films,” Macromolecules 27, 6201–6206 (1994).
    [CrossRef]
  7. Z. Sekkat, M. Büchel, H. Orendi, H. Menzel, and W. Knoll, “Photoinduced alignment of azobenzene moieties in the side chains of polyglutamate films,” Chem. Phys. Lett. 220, 497–501 (1994).
    [CrossRef]
  8. M. Schönhoff, L. F. Chi, H. Fuchs, and M. Lösche, “Structural rearrangements upon photoorientation of amphiphilic azobenzene dyes organized in ultrathin films on solid surfaces,” Langmuir 11, 163–168 (1995).
    [CrossRef]
  9. H. Rau, “Spektroskopische eigenschaften organischer Azoverbindungen,” Angew. Chem. 85, 248–258 (1973).
    [CrossRef]
  10. G. S. Kumar and D. C. Neckers, “Photochemistry of azobenzene containing polymers,” Chem. Rev. 89, 1915–1925 (1989).
    [CrossRef]
  11. M. Eich and J. H. Wendorff, “Laser-induced gratings and spectroscopy in monodomains of liquid-crystalline polymers,” J. Opt. Soc. Am. B 7, 1428–1436 (1990).
    [CrossRef]
  12. Sh. D. Kakichashvili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 171–173 (1972).
  13. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
    [CrossRef] [PubMed]
  14. S. Hvilsted, F. Andruzzi, and P. S. Ramanujam, “Side-chain liquid crystalline polyesters for optical information storage,” Opt. Lett. 17, 1234–1236 (1992).
    [CrossRef] [PubMed]
  15. S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid-crystalline polyesters architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1995).
    [CrossRef]
  16. R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic storage,” Nature (London) 383, 505–509 (1996).
    [CrossRef]
  17. N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “10 000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester,” Opt. Lett. 21, 902–904 (1996).
    [CrossRef] [PubMed]
  18. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic grating in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
    [CrossRef] [PubMed]
  19. I. Naydenova, L. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarimetric investigation of materials with both linear and circular anisotropy,” J. Mod. Opt. 44, 1643–1650 (1997).
    [CrossRef]
  20. Sh. D. Kakichashvili, “Gyrotropy (photogyrotropy) induced in mordant azo dyes by induced circularly polarized light,” Sov. Tech. Phys. Lett. 16, 736–737 (1990).
  21. P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
    [CrossRef]
  22. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
    [CrossRef]
  23. P. S. Ramanujam, N. C. R. Holme, and S. Hvilsted, “Atomic force and optical near-field microscopic investigation of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
    [CrossRef]
  24. N. C. R. Holme, L. Nikolova, P. S. Ramanujam, and S. Hvilsted, “An analysis of the anisotropic and topographic gratings in a side chain liquid-crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1521 (1997).
    [CrossRef]
  25. N. C. R. Holme, “Photoinduced anisotropy, holographic gratings and near-field optical microscopy in side-chain azobenzene polyesters,” Ph.D. dissertation, Risø Rep. R-983(EN) (Risø National Laboratory, Roskilde, Denmark, 1997).
  26. T. Huang and K. H. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10, 306–315 (1993).
    [CrossRef]

1997 (2)

I. Naydenova, L. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarimetric investigation of materials with both linear and circular anisotropy,” J. Mod. Opt. 44, 1643–1650 (1997).
[CrossRef]

N. C. R. Holme, L. Nikolova, P. S. Ramanujam, and S. Hvilsted, “An analysis of the anisotropic and topographic gratings in a side chain liquid-crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1521 (1997).
[CrossRef]

1996 (4)

P. S. Ramanujam, N. C. R. Holme, and S. Hvilsted, “Atomic force and optical near-field microscopic investigation of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic storage,” Nature (London) 383, 505–509 (1996).
[CrossRef]

N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “10 000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester,” Opt. Lett. 21, 902–904 (1996).
[CrossRef] [PubMed]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic grating in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[CrossRef] [PubMed]

1995 (4)

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid-crystalline polyesters architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1995).
[CrossRef]

M. Schönhoff, L. F. Chi, H. Fuchs, and M. Lösche, “Structural rearrangements upon photoorientation of amphiphilic azobenzene dyes organized in ultrathin films on solid surfaces,” Langmuir 11, 163–168 (1995).
[CrossRef]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

1994 (3)

Th. Fischer, L. Läsker, J. Stumpe, and S. G. Kostromin, “Photoinduced optical anisotropy in films of photochromic liquid crystalline polymers,” J. Photochem. Photobiol. A 80, 453–459 (1994).
[CrossRef]

H. H. Haitjema, G. L. von Morgen, Y. Y. Tan, and G. Challa, “Photoresponsive behavior of azobenzene-based (meth)acrylic (co)polymers in thin films,” Macromolecules 27, 6201–6206 (1994).
[CrossRef]

Z. Sekkat, M. Büchel, H. Orendi, H. Menzel, and W. Knoll, “Photoinduced alignment of azobenzene moieties in the side chains of polyglutamate films,” Chem. Phys. Lett. 220, 497–501 (1994).
[CrossRef]

1993 (1)

1992 (2)

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azo polymers for reversible optical storage.1.Poly[4-[[2- (acryloyoxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

S. Hvilsted, F. Andruzzi, and P. S. Ramanujam, “Side-chain liquid crystalline polyesters for optical information storage,” Opt. Lett. 17, 1234–1236 (1992).
[CrossRef] [PubMed]

1990 (4)

M. Eich and J. H. Wendorff, “Laser-induced gratings and spectroscopy in monodomains of liquid-crystalline polymers,” J. Opt. Soc. Am. B 7, 1428–1436 (1990).
[CrossRef]

U. Wiesner, M. Antonietti, C. Boeffel, and H. W. Spiess, “Dynamics of photoinduced isomerization of azobenzene moieties in liquid-crystalline polymers,” Makromol. Chem. 191, 2133–2149 (1990).
[CrossRef]

V. P. Shibaev, I. V. Yakolev, S. G. Kostromin, S. A. Invanov, and T. I. Sverkova, “Specific features of optical information storage in oriented films of liquid crystalline comb-like polymers by means of selective optical excitation,” Vysokomol. Soyed. A 32, 1552–1559 (1990).

Sh. D. Kakichashvili, “Gyrotropy (photogyrotropy) induced in mordant azo dyes by induced circularly polarized light,” Sov. Tech. Phys. Lett. 16, 736–737 (1990).

1989 (1)

G. S. Kumar and D. C. Neckers, “Photochemistry of azobenzene containing polymers,” Chem. Rev. 89, 1915–1925 (1989).
[CrossRef]

1987 (1)

M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” Makromol. Chem. Rapid Commun. 8, 59–63 (1987).
[CrossRef]

1984 (1)

1973 (1)

H. Rau, “Spektroskopische eigenschaften organischer Azoverbindungen,” Angew. Chem. 85, 248–258 (1973).
[CrossRef]

1972 (1)

Sh. D. Kakichashvili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 171–173 (1972).

Andruzzi, F.

I. Naydenova, L. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarimetric investigation of materials with both linear and circular anisotropy,” J. Mod. Opt. 44, 1643–1650 (1997).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic grating in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[CrossRef] [PubMed]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid-crystalline polyesters architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1995).
[CrossRef]

S. Hvilsted, F. Andruzzi, and P. S. Ramanujam, “Side-chain liquid crystalline polyesters for optical information storage,” Opt. Lett. 17, 1234–1236 (1992).
[CrossRef] [PubMed]

Antonietti, M.

U. Wiesner, M. Antonietti, C. Boeffel, and H. W. Spiess, “Dynamics of photoinduced isomerization of azobenzene moieties in liquid-crystalline polymers,” Makromol. Chem. 191, 2133–2149 (1990).
[CrossRef]

Batalla, E.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

Berg, R. H.

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic storage,” Nature (London) 383, 505–509 (1996).
[CrossRef]

Boeffel, C.

U. Wiesner, M. Antonietti, C. Boeffel, and H. W. Spiess, “Dynamics of photoinduced isomerization of azobenzene moieties in liquid-crystalline polymers,” Makromol. Chem. 191, 2133–2149 (1990).
[CrossRef]

Büchel, M.

Z. Sekkat, M. Büchel, H. Orendi, H. Menzel, and W. Knoll, “Photoinduced alignment of azobenzene moieties in the side chains of polyglutamate films,” Chem. Phys. Lett. 220, 497–501 (1994).
[CrossRef]

Challa, G.

H. H. Haitjema, G. L. von Morgen, Y. Y. Tan, and G. Challa, “Photoresponsive behavior of azobenzene-based (meth)acrylic (co)polymers in thin films,” Macromolecules 27, 6201–6206 (1994).
[CrossRef]

Chi, L. F.

M. Schönhoff, L. F. Chi, H. Fuchs, and M. Lösche, “Structural rearrangements upon photoorientation of amphiphilic azobenzene dyes organized in ultrathin films on solid surfaces,” Langmuir 11, 163–168 (1995).
[CrossRef]

Eich, M.

M. Eich and J. H. Wendorff, “Laser-induced gratings and spectroscopy in monodomains of liquid-crystalline polymers,” J. Opt. Soc. Am. B 7, 1428–1436 (1990).
[CrossRef]

M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” Makromol. Chem. Rapid Commun. 8, 59–63 (1987).
[CrossRef]

Fischer, Th.

Th. Fischer, L. Läsker, J. Stumpe, and S. G. Kostromin, “Photoinduced optical anisotropy in films of photochromic liquid crystalline polymers,” J. Photochem. Photobiol. A 80, 453–459 (1994).
[CrossRef]

Fuchs, H.

M. Schönhoff, L. F. Chi, H. Fuchs, and M. Lösche, “Structural rearrangements upon photoorientation of amphiphilic azobenzene dyes organized in ultrathin films on solid surfaces,” Langmuir 11, 163–168 (1995).
[CrossRef]

Gosselin, J.

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azo polymers for reversible optical storage.1.Poly[4-[[2- (acryloyoxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

Haitjema, H. H.

H. H. Haitjema, G. L. von Morgen, Y. Y. Tan, and G. Challa, “Photoresponsive behavior of azobenzene-based (meth)acrylic (co)polymers in thin films,” Macromolecules 27, 6201–6206 (1994).
[CrossRef]

Holme, N. C. R.

N. C. R. Holme, L. Nikolova, P. S. Ramanujam, and S. Hvilsted, “An analysis of the anisotropic and topographic gratings in a side chain liquid-crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1521 (1997).
[CrossRef]

P. S. Ramanujam, N. C. R. Holme, and S. Hvilsted, “Atomic force and optical near-field microscopic investigation of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “10 000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester,” Opt. Lett. 21, 902–904 (1996).
[CrossRef] [PubMed]

Huang, T.

Hvilsted, S.

N. C. R. Holme, L. Nikolova, P. S. Ramanujam, and S. Hvilsted, “An analysis of the anisotropic and topographic gratings in a side chain liquid-crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1521 (1997).
[CrossRef]

I. Naydenova, L. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarimetric investigation of materials with both linear and circular anisotropy,” J. Mod. Opt. 44, 1643–1650 (1997).
[CrossRef]

N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “10 000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester,” Opt. Lett. 21, 902–904 (1996).
[CrossRef] [PubMed]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic grating in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[CrossRef] [PubMed]

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic storage,” Nature (London) 383, 505–509 (1996).
[CrossRef]

P. S. Ramanujam, N. C. R. Holme, and S. Hvilsted, “Atomic force and optical near-field microscopic investigation of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid-crystalline polyesters architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1995).
[CrossRef]

S. Hvilsted, F. Andruzzi, and P. S. Ramanujam, “Side-chain liquid crystalline polyesters for optical information storage,” Opt. Lett. 17, 1234–1236 (1992).
[CrossRef] [PubMed]

Invanov, S. A.

V. P. Shibaev, I. V. Yakolev, S. G. Kostromin, S. A. Invanov, and T. I. Sverkova, “Specific features of optical information storage in oriented films of liquid crystalline comb-like polymers by means of selective optical excitation,” Vysokomol. Soyed. A 32, 1552–1559 (1990).

Ivanov, M.

Kakichashvili, Sh. D.

Sh. D. Kakichashvili, “Gyrotropy (photogyrotropy) induced in mordant azo dyes by induced circularly polarized light,” Sov. Tech. Phys. Lett. 16, 736–737 (1990).

Sh. D. Kakichashvili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 171–173 (1972).

Kim, D. Y.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Knoll, W.

Z. Sekkat, M. Büchel, H. Orendi, H. Menzel, and W. Knoll, “Photoinduced alignment of azobenzene moieties in the side chains of polyglutamate films,” Chem. Phys. Lett. 220, 497–501 (1994).
[CrossRef]

Kostromin, S. G.

Th. Fischer, L. Läsker, J. Stumpe, and S. G. Kostromin, “Photoinduced optical anisotropy in films of photochromic liquid crystalline polymers,” J. Photochem. Photobiol. A 80, 453–459 (1994).
[CrossRef]

V. P. Shibaev, I. V. Yakolev, S. G. Kostromin, S. A. Invanov, and T. I. Sverkova, “Specific features of optical information storage in oriented films of liquid crystalline comb-like polymers by means of selective optical excitation,” Vysokomol. Soyed. A 32, 1552–1559 (1990).

Kulinna, C.

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid-crystalline polyesters architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1995).
[CrossRef]

Kumar, G. S.

G. S. Kumar and D. C. Neckers, “Photochemistry of azobenzene containing polymers,” Chem. Rev. 89, 1915–1925 (1989).
[CrossRef]

Kumar, J.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Läsker, L.

Th. Fischer, L. Läsker, J. Stumpe, and S. G. Kostromin, “Photoinduced optical anisotropy in films of photochromic liquid crystalline polymers,” J. Photochem. Photobiol. A 80, 453–459 (1994).
[CrossRef]

Li, L.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Lösche, M.

M. Schönhoff, L. F. Chi, H. Fuchs, and M. Lösche, “Structural rearrangements upon photoorientation of amphiphilic azobenzene dyes organized in ultrathin films on solid surfaces,” Langmuir 11, 163–168 (1995).
[CrossRef]

Menzel, H.

Z. Sekkat, M. Büchel, H. Orendi, H. Menzel, and W. Knoll, “Photoinduced alignment of azobenzene moieties in the side chains of polyglutamate films,” Chem. Phys. Lett. 220, 497–501 (1994).
[CrossRef]

Natansohn, A.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azo polymers for reversible optical storage.1.Poly[4-[[2- (acryloyoxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

Naydenova, I.

I. Naydenova, L. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarimetric investigation of materials with both linear and circular anisotropy,” J. Mod. Opt. 44, 1643–1650 (1997).
[CrossRef]

Neckers, D. C.

G. S. Kumar and D. C. Neckers, “Photochemistry of azobenzene containing polymers,” Chem. Rev. 89, 1915–1925 (1989).
[CrossRef]

Nikolova, L.

I. Naydenova, L. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarimetric investigation of materials with both linear and circular anisotropy,” J. Mod. Opt. 44, 1643–1650 (1997).
[CrossRef]

N. C. R. Holme, L. Nikolova, P. S. Ramanujam, and S. Hvilsted, “An analysis of the anisotropic and topographic gratings in a side chain liquid-crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1521 (1997).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic grating in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[CrossRef] [PubMed]

T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

Orendi, H.

Z. Sekkat, M. Büchel, H. Orendi, H. Menzel, and W. Knoll, “Photoinduced alignment of azobenzene moieties in the side chains of polyglutamate films,” Chem. Phys. Lett. 220, 497–501 (1994).
[CrossRef]

Ramanujam, P. S.

I. Naydenova, L. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarimetric investigation of materials with both linear and circular anisotropy,” J. Mod. Opt. 44, 1643–1650 (1997).
[CrossRef]

N. C. R. Holme, L. Nikolova, P. S. Ramanujam, and S. Hvilsted, “An analysis of the anisotropic and topographic gratings in a side chain liquid-crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1521 (1997).
[CrossRef]

P. S. Ramanujam, N. C. R. Holme, and S. Hvilsted, “Atomic force and optical near-field microscopic investigation of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “10 000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester,” Opt. Lett. 21, 902–904 (1996).
[CrossRef] [PubMed]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic grating in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[CrossRef] [PubMed]

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic storage,” Nature (London) 383, 505–509 (1996).
[CrossRef]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid-crystalline polyesters architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1995).
[CrossRef]

S. Hvilsted, F. Andruzzi, and P. S. Ramanujam, “Side-chain liquid crystalline polyesters for optical information storage,” Opt. Lett. 17, 1234–1236 (1992).
[CrossRef] [PubMed]

Rau, H.

H. Rau, “Spektroskopische eigenschaften organischer Azoverbindungen,” Angew. Chem. 85, 248–258 (1973).
[CrossRef]

Reck, B.

M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” Makromol. Chem. Rapid Commun. 8, 59–63 (1987).
[CrossRef]

Ringsdorf, H.

M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” Makromol. Chem. Rapid Commun. 8, 59–63 (1987).
[CrossRef]

Rochon, P.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azo polymers for reversible optical storage.1.Poly[4-[[2- (acryloyoxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

Schönhoff, M.

M. Schönhoff, L. F. Chi, H. Fuchs, and M. Lösche, “Structural rearrangements upon photoorientation of amphiphilic azobenzene dyes organized in ultrathin films on solid surfaces,” Langmuir 11, 163–168 (1995).
[CrossRef]

Sekkat, Z.

Z. Sekkat, M. Büchel, H. Orendi, H. Menzel, and W. Knoll, “Photoinduced alignment of azobenzene moieties in the side chains of polyglutamate films,” Chem. Phys. Lett. 220, 497–501 (1994).
[CrossRef]

Shibaev, V. P.

V. P. Shibaev, I. V. Yakolev, S. G. Kostromin, S. A. Invanov, and T. I. Sverkova, “Specific features of optical information storage in oriented films of liquid crystalline comb-like polymers by means of selective optical excitation,” Vysokomol. Soyed. A 32, 1552–1559 (1990).

Siesler, H. W.

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid-crystalline polyesters architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1995).
[CrossRef]

Spiess, H. W.

U. Wiesner, M. Antonietti, C. Boeffel, and H. W. Spiess, “Dynamics of photoinduced isomerization of azobenzene moieties in liquid-crystalline polymers,” Makromol. Chem. 191, 2133–2149 (1990).
[CrossRef]

Stumpe, J.

Th. Fischer, L. Läsker, J. Stumpe, and S. G. Kostromin, “Photoinduced optical anisotropy in films of photochromic liquid crystalline polymers,” J. Photochem. Photobiol. A 80, 453–459 (1994).
[CrossRef]

Sverkova, T. I.

V. P. Shibaev, I. V. Yakolev, S. G. Kostromin, S. A. Invanov, and T. I. Sverkova, “Specific features of optical information storage in oriented films of liquid crystalline comb-like polymers by means of selective optical excitation,” Vysokomol. Soyed. A 32, 1552–1559 (1990).

Tan, Y. Y.

H. H. Haitjema, G. L. von Morgen, Y. Y. Tan, and G. Challa, “Photoresponsive behavior of azobenzene-based (meth)acrylic (co)polymers in thin films,” Macromolecules 27, 6201–6206 (1994).
[CrossRef]

Todorov, T.

Tomova, N.

Tripathy, S. K.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

von Morgen, G. L.

H. H. Haitjema, G. L. von Morgen, Y. Y. Tan, and G. Challa, “Photoresponsive behavior of azobenzene-based (meth)acrylic (co)polymers in thin films,” Macromolecules 27, 6201–6206 (1994).
[CrossRef]

Wagner, K. H.

Wendorff, J. H.

M. Eich and J. H. Wendorff, “Laser-induced gratings and spectroscopy in monodomains of liquid-crystalline polymers,” J. Opt. Soc. Am. B 7, 1428–1436 (1990).
[CrossRef]

M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” Makromol. Chem. Rapid Commun. 8, 59–63 (1987).
[CrossRef]

Wiesner, U.

U. Wiesner, M. Antonietti, C. Boeffel, and H. W. Spiess, “Dynamics of photoinduced isomerization of azobenzene moieties in liquid-crystalline polymers,” Makromol. Chem. 191, 2133–2149 (1990).
[CrossRef]

Xie, S.

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azo polymers for reversible optical storage.1.Poly[4-[[2- (acryloyoxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

Yakolev, I. V.

V. P. Shibaev, I. V. Yakolev, S. G. Kostromin, S. A. Invanov, and T. I. Sverkova, “Specific features of optical information storage in oriented films of liquid crystalline comb-like polymers by means of selective optical excitation,” Vysokomol. Soyed. A 32, 1552–1559 (1990).

Angew. Chem. (1)

H. Rau, “Spektroskopische eigenschaften organischer Azoverbindungen,” Angew. Chem. 85, 248–258 (1973).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

P. S. Ramanujam, N. C. R. Holme, and S. Hvilsted, “Atomic force and optical near-field microscopic investigation of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

N. C. R. Holme, L. Nikolova, P. S. Ramanujam, and S. Hvilsted, “An analysis of the anisotropic and topographic gratings in a side chain liquid-crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1521 (1997).
[CrossRef]

Chem. Phys. Lett. (1)

Z. Sekkat, M. Büchel, H. Orendi, H. Menzel, and W. Knoll, “Photoinduced alignment of azobenzene moieties in the side chains of polyglutamate films,” Chem. Phys. Lett. 220, 497–501 (1994).
[CrossRef]

Chem. Rev. (1)

G. S. Kumar and D. C. Neckers, “Photochemistry of azobenzene containing polymers,” Chem. Rev. 89, 1915–1925 (1989).
[CrossRef]

J. Mod. Opt. (1)

I. Naydenova, L. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarimetric investigation of materials with both linear and circular anisotropy,” J. Mod. Opt. 44, 1643–1650 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. A (1)

Th. Fischer, L. Läsker, J. Stumpe, and S. G. Kostromin, “Photoinduced optical anisotropy in films of photochromic liquid crystalline polymers,” J. Photochem. Photobiol. A 80, 453–459 (1994).
[CrossRef]

Langmuir (1)

M. Schönhoff, L. F. Chi, H. Fuchs, and M. Lösche, “Structural rearrangements upon photoorientation of amphiphilic azobenzene dyes organized in ultrathin films on solid surfaces,” Langmuir 11, 163–168 (1995).
[CrossRef]

Macromolecules (3)

H. H. Haitjema, G. L. von Morgen, Y. Y. Tan, and G. Challa, “Photoresponsive behavior of azobenzene-based (meth)acrylic (co)polymers in thin films,” Macromolecules 27, 6201–6206 (1994).
[CrossRef]

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azo polymers for reversible optical storage.1.Poly[4-[[2- (acryloyoxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid-crystalline polyesters architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1995).
[CrossRef]

Makromol. Chem. (1)

U. Wiesner, M. Antonietti, C. Boeffel, and H. W. Spiess, “Dynamics of photoinduced isomerization of azobenzene moieties in liquid-crystalline polymers,” Makromol. Chem. 191, 2133–2149 (1990).
[CrossRef]

Makromol. Chem. Rapid Commun. (1)

M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” Makromol. Chem. Rapid Commun. 8, 59–63 (1987).
[CrossRef]

Nature (London) (1)

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic storage,” Nature (London) 383, 505–509 (1996).
[CrossRef]

Opt. Lett. (2)

Opt. Spectrosc. (1)

Sh. D. Kakichashvili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 171–173 (1972).

Sov. Tech. Phys. Lett. (1)

Sh. D. Kakichashvili, “Gyrotropy (photogyrotropy) induced in mordant azo dyes by induced circularly polarized light,” Sov. Tech. Phys. Lett. 16, 736–737 (1990).

Vysokomol. Soyed. A (1)

V. P. Shibaev, I. V. Yakolev, S. G. Kostromin, S. A. Invanov, and T. I. Sverkova, “Specific features of optical information storage in oriented films of liquid crystalline comb-like polymers by means of selective optical excitation,” Vysokomol. Soyed. A 32, 1552–1559 (1990).

Other (1)

N. C. R. Holme, “Photoinduced anisotropy, holographic gratings and near-field optical microscopy in side-chain azobenzene polyesters,” Ph.D. dissertation, Risø Rep. R-983(EN) (Risø National Laboratory, Roskilde, Denmark, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Geometry of the recording and diffracted beams.

Fig. 2
Fig. 2

Experimentally measured dependencies of the normalized intensity In (the diffraction efficiency) of the waves diffracted in the +1, -1, +2, and -2 orders on the polarization azimuth α of the reconstructing He–Ne beams. The arrows show the azimuths of the recording beams polarizations: -45° and +45°. The recording intensity is 100 mW/cm2 [Fig. 2(a)] and 750 mW/cm2 [Fig. 2(b)].

Fig. 3
Fig. 3

Experimentally measured curves I±1(α) and I±2(α) in the case in which the recording waves are with horizontal (0°) and vertical (90°) polarizations. The recording intensity is 150 mw/cm2 [Fig. 3(a)] and 600 mW/cm2 [Fig. 3(b)].

Fig. 4
Fig. 4

Polarization modulation of the interference light field recording the gratings in the two geometries used, (a) and (b). E1 and E2 are the polarization vectors of the two recording waves, and δ is the phase difference between them.

Fig. 5
Fig. 5

Theoretical curves for I±1(α) and I±2(α). The first row of figures corresponds to recording waves polarized at ±45°; the second row corresponds to recording waves at 0° and 90°. (a): Δφlin=(2π/λ)klinId=-0.39; Δφcir=(2π/λ)kcirId=-0.048; r1=0, r2=0; (b): Δφlin=-0.45, Δφcir=0, r1=200 nm, Δ1=π; (c): φlin=-0.45, Δφcir=-0.05, r1=200 nm, Δ1=π; (d): Δφlin=-0.4, Δφcir=0, r1=0, r2=80 nm, Δ2=π/4; (e): Δφlin=-0.4, Δφcir=0.05, r1=0, r2=80 nm, Δ2=π/4. The effect of the diffracted waves on the recording interference field is not taken into account in these calculations.

Fig. 6
Fig. 6

Theoretical curves for I±1(α) and I±2(α) calculated in the case in which the influence of the ±1-order diffracted waves on the polarization modulation of the recording light field is taken into account. (a): Δφlin=-0.39, Δφcir=-0.048, r1=0, r2=0; (b): Δφlin=-0.5, Δφcir=0, r1=440 nm, Δ1=π, r2=0; (c): Δφlin=-0.5, Δφcir=0, r1=10 nm, Δ1=π, r2=90 nm, Δ2=π/4.

Fig. 7
Fig. 7

Modulation of the Stokes parameters S1, S2, and S3 when the influence of the waves diffracted in the ±1 orders on the polarization pattern is taken into account.

Fig. 8
Fig. 8

AFM scan of the surface of holographic gratings recorded with two waves linearly polarized at 0° and 90°, λ=488 nm, I=750 mW/cm2 and exposure time (a) 5 s, (b) 10 s, and (c) 20 s.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Δn=ksS0+klinS1klinS2+ikcirS3klinS2-ikcirS3ksS0-klinS,
S0=I=const.,
S1=I cos δ,
S2=0,
S3=-I sin δ,
S0=I=const.,
S1=0,
S2=I cos δ,
S3=-I sin δ,
Tan=exp[i(2π/λ)(n0+Δn)d]=exp(iφ0)exp[i(2π/λ)Δnd],
Eout=TanEin.
Eout=RTanEin=TtotEin.
R=exp(iΔψ)00exp(iΔψ),
Δψ=(2π/λ)r1[(np-na)/2]cos(δ+Δ1),
Δψ=(2π/λ)r2[(np-na)/2]cos 2(δ+Δ2),

Metrics