Abstract

We discuss the upconversion luminescence efficiencies of phosphors that generate red, green, and blue light. The phosphors studied are single crystals and powders codoped with Er3+ and Yb3+ and with Tm3+ and Yb3+. The Yb ions are pumped near 980 nm; transfers of two or three quanta to the codoped rare-earth ion generate visible luminescence. The main contribution is the quantitative measurement of this upconversion efficiency, based on the use of a calibrated integrating sphere, determination of the fraction of pump light absorbed, and careful control of the pump-laser-beam profile. The green phosphors are the most efficient, yielding efficiency values as high as 4%, with the red and blue materials giving 1%–2%. Saturation was observed in all cases, suggesting that populations of upconversion steps of the ions are maximized at higher power. Quasi-cw modeling of the intensity-dependent upconversion efficiency was attempted; input data included level lifetimes, transition cross sections, and cross-relaxation-rate coefficients. The saturation of the Yb,Er:fluoride media is explained by the pumping of Er3+ ions into a bottleneck (long-lived state), that is, the 4I13/2 metastable level, making them unavailable for further excitation transfer.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2, 84–85 (1959).
    [CrossRef]
  2. TOKIN IR catcher (Tokin America, 155 Nicholson Lane, San Jose, California 95134); LLNL internal characterization with X-ray diffraction.
  3. F. Heine, V. Ostroumov, E. Heumann, T. Jensen, G. Huber, and B. H. T. Chai, “CW Yb, Tm:YLF upconversion laser at 650 nm, 800 nm, and 1500 nm,” Advanced Solid-State Lasers, B. Chai and S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 77–79; P. Xie and T. R. Gosnell, “Diode-pumped, CW, blue, green, orange, and red upconversion fiber lasers operating at room temperature,” in Advanced Solid-State Lasers, B. Chai and S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 101–105.
  4. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
    [CrossRef]
  5. F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–788 (1973).
    [CrossRef]
  6. T. Kano, H. Yamamoto, and Y. Otomo, “NaLnF4:Yb3+, Er3+ (Ln:Y, Gd, La): efficient green-emitting infrared-excited phosphors,” J. Electrochem. Soc. 119, 1561–1564 (1972).
    [CrossRef]
  7. H. Chou, P. Albers, A. Cassanho, and H. Jenssen, “CW Tunable Laser Emission of Nd3+:Na0.4Y0.6F2.2,” in Tunable Solid State Lasers, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1986), p. 322.
  8. N. Menyuk, K. Dwight, and J. W. Pierce, “NaYF4:Yb, Er—an efficient upconversion phosphor,” Appl. Phys. Lett. 21, 159–161 (1972).
    [CrossRef]
  9. P. N. Yocom, J. P. Wittke, and I. Ladany, “Rare-earth-doped oxysulfides for GaAs-pumped luminescent devices,” Metall. Trans. A 2, 763–767 (1971).
    [CrossRef]
  10. J. P. Wittke, I. Ladany, and P. N. Yocom, “Y2O3:Yb:Er:—new red-emitting infrared-excited phosphor,” J. Appl. Phys. 43, 595–600 (1972).
    [CrossRef]
  11. Y. Mita, H. Yamamoto, K. Katayanagi, and S. Shionoya, “Energy transfer processes in Er3+- and Yb3+-doped infrared upconversion materials,” J. Appl. Phys. 78, 1219–1223 (1995).
    [CrossRef]
  12. J. E. Geusic, F. W. Ostermayer, H. M. Marcos, L. G. Van Uitert, and J. P. van der Ziel, “Efficiency of red, green, and blue infrared-to-visible conversion sources,” J. Appl. Phys. 42, 1958–1960 (1971).
    [CrossRef]
  13. F. W. Ostermayer, “Preparation and properties of infrared-to-visible conversion phosphors,” Metall. Trans. A 2, 747–755 (1971).
    [CrossRef]
  14. R. A. Hewes and J. F. Sarver, “Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides,” Phys. Rev. 182, 427–436 (1969).
    [CrossRef]
  15. L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43, 1125–1137 (1972).
    [CrossRef]
  16. J. D. Kingsley, G. E. Fenner, and S. V. Galginaitis, “Kinetics and efficiency of infrared-to-visible conversion in LaF3:Yb, Er,” Appl. Phys. Lett. 15, 115–117 (1969).
    [CrossRef]
  17. E. Okamoto, H. Masui, K. Muto, and K. Awazu, “Nonresonant energy transfer from Er3+ to Yb3+ in LaF3,” J. Appl. Phys. 43, 2122–2123 (1972).
    [CrossRef]
  18. M. A. Chamarro and R. Cases, “Infrared to visible upconversion of Er3+ in Yb3+ doped fluorohafnate glasses,” J. Lumin. 46, 59–65 (1990).
    [CrossRef]
  19. F. Auzel, D. Pecile, and D. Morin, “Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared upconversion,” J. Electrochem. Soc. 122, 101–107 (1975).
    [CrossRef]
  20. J. P. Wittke, I. Ladany, and P. N. Yocom, “Properties of a blue-emitting IR pumped YF3:Yb, Tm diode,” Proc. IEEE 58, 1283–1285 (1970).
    [CrossRef]
  21. Y. Wang and J. Ohwaki, “High-efficiency infrared-to-visible conversion of Er3+ in BaCl2,” J. Appl. Phys. 74, 1272–1278 (1993).
    [CrossRef]
  22. S. L. Jacques, “Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation,” Appl. Opt. 32, 2447–2454 (1993).
    [CrossRef] [PubMed]
  23. A. Bril, J. L. Sommerdijk, and A. W. de Jager, “On the efficiency of Yb3+–Er3+ activated up-conversion phosphors,” J. Electrochem. Soc. 122, 660–663 (1974).
    [CrossRef]
  24. F. Auzel and D. Pecile, “Comparison and efficiency of materials for summation of photons assisted by energy transfer,” J. Lumin. 8, 32–43 (1973).
    [CrossRef]
  25. A. Kermaoui, G. Özen, Ph. Goldner, J. P. Denis, and F. Pellé, “Infrared to blue upconversion fluorescence in heavy metal fluoride glass codoped with Tm3+ and Yb3+ ions,” J. Phys. Chem. Solids 55, 677–682 (1994).
    [CrossRef]
  26. G. Özen, J. P. Denis, Xu Wu, F. Pellé, and B. Blanzat, “Upconversion luminescence of Tm3+ in Yb3+-doped fluorophosphate glasses under 683 nm excitation,” J. Non-Cryst. Solids 176, 147–156 (1994).
    [CrossRef]
  27. D. C. Yeh, W. A. Sibley, and M. J. Suscavage, “Efficient frequency upconversion of Tm3+ ions in Yb3+ doped barium-thorium-fluoride glass,” J. Appl. Phys. 63, 4644–4650 (1988).
    [CrossRef]
  28. T. C. Rich and D. A. Pinnow, “Exploring the ultimate efficiency in infrared-to-visible converting phosphors activated with Er and sensitized with Yb,” J. Appl. Phys. 43, 2357–2365 (1972).
    [CrossRef]
  29. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, Fla., 1996), p. 275.
  30. J. Wright, “Up-conversion and excited state energy transfer in rare-earth doped materials,” in Radiationless Processes in Molecules and Condensed Phases, Vol. 15 of Topics in Applied Physics, F. K. Fong, ed. (Springer, New York, 1976), Chap. 4, pp. 239–295.
    [CrossRef]
  31. Y. Mita, “Luminescence processes in Yb3+-sensitized rare-earth phosphors,” J. Appl. Phys. 43, 1772–1778 (1972).
    [CrossRef]
  32. J. D. Kingsley, “Analysis of energy transfer and infrared-to-visible conversion in LaF3:Yb, Er,” J. Appl. Phys. 41, 175–182 (1970).
    [CrossRef]
  33. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994), p. 281.

1996 (1)

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

1995 (1)

Y. Mita, H. Yamamoto, K. Katayanagi, and S. Shionoya, “Energy transfer processes in Er3+- and Yb3+-doped infrared upconversion materials,” J. Appl. Phys. 78, 1219–1223 (1995).
[CrossRef]

1994 (2)

A. Kermaoui, G. Özen, Ph. Goldner, J. P. Denis, and F. Pellé, “Infrared to blue upconversion fluorescence in heavy metal fluoride glass codoped with Tm3+ and Yb3+ ions,” J. Phys. Chem. Solids 55, 677–682 (1994).
[CrossRef]

G. Özen, J. P. Denis, Xu Wu, F. Pellé, and B. Blanzat, “Upconversion luminescence of Tm3+ in Yb3+-doped fluorophosphate glasses under 683 nm excitation,” J. Non-Cryst. Solids 176, 147–156 (1994).
[CrossRef]

1993 (2)

S. L. Jacques, “Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation,” Appl. Opt. 32, 2447–2454 (1993).
[CrossRef] [PubMed]

Y. Wang and J. Ohwaki, “High-efficiency infrared-to-visible conversion of Er3+ in BaCl2,” J. Appl. Phys. 74, 1272–1278 (1993).
[CrossRef]

1990 (1)

M. A. Chamarro and R. Cases, “Infrared to visible upconversion of Er3+ in Yb3+ doped fluorohafnate glasses,” J. Lumin. 46, 59–65 (1990).
[CrossRef]

1988 (1)

D. C. Yeh, W. A. Sibley, and M. J. Suscavage, “Efficient frequency upconversion of Tm3+ ions in Yb3+ doped barium-thorium-fluoride glass,” J. Appl. Phys. 63, 4644–4650 (1988).
[CrossRef]

1975 (1)

F. Auzel, D. Pecile, and D. Morin, “Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared upconversion,” J. Electrochem. Soc. 122, 101–107 (1975).
[CrossRef]

1974 (1)

A. Bril, J. L. Sommerdijk, and A. W. de Jager, “On the efficiency of Yb3+–Er3+ activated up-conversion phosphors,” J. Electrochem. Soc. 122, 660–663 (1974).
[CrossRef]

1973 (2)

F. Auzel and D. Pecile, “Comparison and efficiency of materials for summation of photons assisted by energy transfer,” J. Lumin. 8, 32–43 (1973).
[CrossRef]

F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–788 (1973).
[CrossRef]

1972 (7)

T. Kano, H. Yamamoto, and Y. Otomo, “NaLnF4:Yb3+, Er3+ (Ln:Y, Gd, La): efficient green-emitting infrared-excited phosphors,” J. Electrochem. Soc. 119, 1561–1564 (1972).
[CrossRef]

N. Menyuk, K. Dwight, and J. W. Pierce, “NaYF4:Yb, Er—an efficient upconversion phosphor,” Appl. Phys. Lett. 21, 159–161 (1972).
[CrossRef]

J. P. Wittke, I. Ladany, and P. N. Yocom, “Y2O3:Yb:Er:—new red-emitting infrared-excited phosphor,” J. Appl. Phys. 43, 595–600 (1972).
[CrossRef]

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43, 1125–1137 (1972).
[CrossRef]

T. C. Rich and D. A. Pinnow, “Exploring the ultimate efficiency in infrared-to-visible converting phosphors activated with Er and sensitized with Yb,” J. Appl. Phys. 43, 2357–2365 (1972).
[CrossRef]

Y. Mita, “Luminescence processes in Yb3+-sensitized rare-earth phosphors,” J. Appl. Phys. 43, 1772–1778 (1972).
[CrossRef]

E. Okamoto, H. Masui, K. Muto, and K. Awazu, “Nonresonant energy transfer from Er3+ to Yb3+ in LaF3,” J. Appl. Phys. 43, 2122–2123 (1972).
[CrossRef]

1971 (3)

P. N. Yocom, J. P. Wittke, and I. Ladany, “Rare-earth-doped oxysulfides for GaAs-pumped luminescent devices,” Metall. Trans. A 2, 763–767 (1971).
[CrossRef]

J. E. Geusic, F. W. Ostermayer, H. M. Marcos, L. G. Van Uitert, and J. P. van der Ziel, “Efficiency of red, green, and blue infrared-to-visible conversion sources,” J. Appl. Phys. 42, 1958–1960 (1971).
[CrossRef]

F. W. Ostermayer, “Preparation and properties of infrared-to-visible conversion phosphors,” Metall. Trans. A 2, 747–755 (1971).
[CrossRef]

1970 (2)

J. P. Wittke, I. Ladany, and P. N. Yocom, “Properties of a blue-emitting IR pumped YF3:Yb, Tm diode,” Proc. IEEE 58, 1283–1285 (1970).
[CrossRef]

J. D. Kingsley, “Analysis of energy transfer and infrared-to-visible conversion in LaF3:Yb, Er,” J. Appl. Phys. 41, 175–182 (1970).
[CrossRef]

1969 (2)

J. D. Kingsley, G. E. Fenner, and S. V. Galginaitis, “Kinetics and efficiency of infrared-to-visible conversion in LaF3:Yb, Er,” Appl. Phys. Lett. 15, 115–117 (1969).
[CrossRef]

R. A. Hewes and J. F. Sarver, “Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides,” Phys. Rev. 182, 427–436 (1969).
[CrossRef]

1959 (1)

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2, 84–85 (1959).
[CrossRef]

Auzel, F.

F. Auzel, D. Pecile, and D. Morin, “Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared upconversion,” J. Electrochem. Soc. 122, 101–107 (1975).
[CrossRef]

F. Auzel and D. Pecile, “Comparison and efficiency of materials for summation of photons assisted by energy transfer,” J. Lumin. 8, 32–43 (1973).
[CrossRef]

Auzel, F. E.

F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–788 (1973).
[CrossRef]

Awazu, K.

E. Okamoto, H. Masui, K. Muto, and K. Awazu, “Nonresonant energy transfer from Er3+ to Yb3+ in LaF3,” J. Appl. Phys. 43, 2122–2123 (1972).
[CrossRef]

Blanzat, B.

G. Özen, J. P. Denis, Xu Wu, F. Pellé, and B. Blanzat, “Upconversion luminescence of Tm3+ in Yb3+-doped fluorophosphate glasses under 683 nm excitation,” J. Non-Cryst. Solids 176, 147–156 (1994).
[CrossRef]

Bloembergen, N.

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2, 84–85 (1959).
[CrossRef]

Bril, A.

A. Bril, J. L. Sommerdijk, and A. W. de Jager, “On the efficiency of Yb3+–Er3+ activated up-conversion phosphors,” J. Electrochem. Soc. 122, 660–663 (1974).
[CrossRef]

Cases, R.

M. A. Chamarro and R. Cases, “Infrared to visible upconversion of Er3+ in Yb3+ doped fluorohafnate glasses,” J. Lumin. 46, 59–65 (1990).
[CrossRef]

Chamarro, M. A.

M. A. Chamarro and R. Cases, “Infrared to visible upconversion of Er3+ in Yb3+ doped fluorohafnate glasses,” J. Lumin. 46, 59–65 (1990).
[CrossRef]

de Jager, A. W.

A. Bril, J. L. Sommerdijk, and A. W. de Jager, “On the efficiency of Yb3+–Er3+ activated up-conversion phosphors,” J. Electrochem. Soc. 122, 660–663 (1974).
[CrossRef]

Denis, J. P.

A. Kermaoui, G. Özen, Ph. Goldner, J. P. Denis, and F. Pellé, “Infrared to blue upconversion fluorescence in heavy metal fluoride glass codoped with Tm3+ and Yb3+ ions,” J. Phys. Chem. Solids 55, 677–682 (1994).
[CrossRef]

G. Özen, J. P. Denis, Xu Wu, F. Pellé, and B. Blanzat, “Upconversion luminescence of Tm3+ in Yb3+-doped fluorophosphate glasses under 683 nm excitation,” J. Non-Cryst. Solids 176, 147–156 (1994).
[CrossRef]

Downing, E.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Dwight, K.

N. Menyuk, K. Dwight, and J. W. Pierce, “NaYF4:Yb, Er—an efficient upconversion phosphor,” Appl. Phys. Lett. 21, 159–161 (1972).
[CrossRef]

Fenner, G. E.

J. D. Kingsley, G. E. Fenner, and S. V. Galginaitis, “Kinetics and efficiency of infrared-to-visible conversion in LaF3:Yb, Er,” Appl. Phys. Lett. 15, 115–117 (1969).
[CrossRef]

Galginaitis, S. V.

J. D. Kingsley, G. E. Fenner, and S. V. Galginaitis, “Kinetics and efficiency of infrared-to-visible conversion in LaF3:Yb, Er,” Appl. Phys. Lett. 15, 115–117 (1969).
[CrossRef]

Geusic, J. E.

J. E. Geusic, F. W. Ostermayer, H. M. Marcos, L. G. Van Uitert, and J. P. van der Ziel, “Efficiency of red, green, and blue infrared-to-visible conversion sources,” J. Appl. Phys. 42, 1958–1960 (1971).
[CrossRef]

Goldner, Ph.

A. Kermaoui, G. Özen, Ph. Goldner, J. P. Denis, and F. Pellé, “Infrared to blue upconversion fluorescence in heavy metal fluoride glass codoped with Tm3+ and Yb3+ ions,” J. Phys. Chem. Solids 55, 677–682 (1994).
[CrossRef]

Guggenheim, H. J.

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43, 1125–1137 (1972).
[CrossRef]

Hesselink, L.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Hewes, R. A.

R. A. Hewes and J. F. Sarver, “Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides,” Phys. Rev. 182, 427–436 (1969).
[CrossRef]

Jacques, S. L.

Johnson, L. F.

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43, 1125–1137 (1972).
[CrossRef]

Kano, T.

T. Kano, H. Yamamoto, and Y. Otomo, “NaLnF4:Yb3+, Er3+ (Ln:Y, Gd, La): efficient green-emitting infrared-excited phosphors,” J. Electrochem. Soc. 119, 1561–1564 (1972).
[CrossRef]

Katayanagi, K.

Y. Mita, H. Yamamoto, K. Katayanagi, and S. Shionoya, “Energy transfer processes in Er3+- and Yb3+-doped infrared upconversion materials,” J. Appl. Phys. 78, 1219–1223 (1995).
[CrossRef]

Kermaoui, A.

A. Kermaoui, G. Özen, Ph. Goldner, J. P. Denis, and F. Pellé, “Infrared to blue upconversion fluorescence in heavy metal fluoride glass codoped with Tm3+ and Yb3+ ions,” J. Phys. Chem. Solids 55, 677–682 (1994).
[CrossRef]

Kingsley, J. D.

J. D. Kingsley, “Analysis of energy transfer and infrared-to-visible conversion in LaF3:Yb, Er,” J. Appl. Phys. 41, 175–182 (1970).
[CrossRef]

J. D. Kingsley, G. E. Fenner, and S. V. Galginaitis, “Kinetics and efficiency of infrared-to-visible conversion in LaF3:Yb, Er,” Appl. Phys. Lett. 15, 115–117 (1969).
[CrossRef]

Ladany, I.

J. P. Wittke, I. Ladany, and P. N. Yocom, “Y2O3:Yb:Er:—new red-emitting infrared-excited phosphor,” J. Appl. Phys. 43, 595–600 (1972).
[CrossRef]

P. N. Yocom, J. P. Wittke, and I. Ladany, “Rare-earth-doped oxysulfides for GaAs-pumped luminescent devices,” Metall. Trans. A 2, 763–767 (1971).
[CrossRef]

J. P. Wittke, I. Ladany, and P. N. Yocom, “Properties of a blue-emitting IR pumped YF3:Yb, Tm diode,” Proc. IEEE 58, 1283–1285 (1970).
[CrossRef]

Macfarlane, R.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Marcos, H. M.

J. E. Geusic, F. W. Ostermayer, H. M. Marcos, L. G. Van Uitert, and J. P. van der Ziel, “Efficiency of red, green, and blue infrared-to-visible conversion sources,” J. Appl. Phys. 42, 1958–1960 (1971).
[CrossRef]

Masui, H.

E. Okamoto, H. Masui, K. Muto, and K. Awazu, “Nonresonant energy transfer from Er3+ to Yb3+ in LaF3,” J. Appl. Phys. 43, 2122–2123 (1972).
[CrossRef]

Menyuk, N.

N. Menyuk, K. Dwight, and J. W. Pierce, “NaYF4:Yb, Er—an efficient upconversion phosphor,” Appl. Phys. Lett. 21, 159–161 (1972).
[CrossRef]

Mita, Y.

Y. Mita, H. Yamamoto, K. Katayanagi, and S. Shionoya, “Energy transfer processes in Er3+- and Yb3+-doped infrared upconversion materials,” J. Appl. Phys. 78, 1219–1223 (1995).
[CrossRef]

Y. Mita, “Luminescence processes in Yb3+-sensitized rare-earth phosphors,” J. Appl. Phys. 43, 1772–1778 (1972).
[CrossRef]

Morin, D.

F. Auzel, D. Pecile, and D. Morin, “Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared upconversion,” J. Electrochem. Soc. 122, 101–107 (1975).
[CrossRef]

Muto, K.

E. Okamoto, H. Masui, K. Muto, and K. Awazu, “Nonresonant energy transfer from Er3+ to Yb3+ in LaF3,” J. Appl. Phys. 43, 2122–2123 (1972).
[CrossRef]

Ohwaki, J.

Y. Wang and J. Ohwaki, “High-efficiency infrared-to-visible conversion of Er3+ in BaCl2,” J. Appl. Phys. 74, 1272–1278 (1993).
[CrossRef]

Okamoto, E.

E. Okamoto, H. Masui, K. Muto, and K. Awazu, “Nonresonant energy transfer from Er3+ to Yb3+ in LaF3,” J. Appl. Phys. 43, 2122–2123 (1972).
[CrossRef]

Ostermayer, F. W.

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43, 1125–1137 (1972).
[CrossRef]

J. E. Geusic, F. W. Ostermayer, H. M. Marcos, L. G. Van Uitert, and J. P. van der Ziel, “Efficiency of red, green, and blue infrared-to-visible conversion sources,” J. Appl. Phys. 42, 1958–1960 (1971).
[CrossRef]

F. W. Ostermayer, “Preparation and properties of infrared-to-visible conversion phosphors,” Metall. Trans. A 2, 747–755 (1971).
[CrossRef]

Otomo, Y.

T. Kano, H. Yamamoto, and Y. Otomo, “NaLnF4:Yb3+, Er3+ (Ln:Y, Gd, La): efficient green-emitting infrared-excited phosphors,” J. Electrochem. Soc. 119, 1561–1564 (1972).
[CrossRef]

Özen, G.

A. Kermaoui, G. Özen, Ph. Goldner, J. P. Denis, and F. Pellé, “Infrared to blue upconversion fluorescence in heavy metal fluoride glass codoped with Tm3+ and Yb3+ ions,” J. Phys. Chem. Solids 55, 677–682 (1994).
[CrossRef]

G. Özen, J. P. Denis, Xu Wu, F. Pellé, and B. Blanzat, “Upconversion luminescence of Tm3+ in Yb3+-doped fluorophosphate glasses under 683 nm excitation,” J. Non-Cryst. Solids 176, 147–156 (1994).
[CrossRef]

Pecile, D.

F. Auzel, D. Pecile, and D. Morin, “Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared upconversion,” J. Electrochem. Soc. 122, 101–107 (1975).
[CrossRef]

F. Auzel and D. Pecile, “Comparison and efficiency of materials for summation of photons assisted by energy transfer,” J. Lumin. 8, 32–43 (1973).
[CrossRef]

Pellé, F.

G. Özen, J. P. Denis, Xu Wu, F. Pellé, and B. Blanzat, “Upconversion luminescence of Tm3+ in Yb3+-doped fluorophosphate glasses under 683 nm excitation,” J. Non-Cryst. Solids 176, 147–156 (1994).
[CrossRef]

A. Kermaoui, G. Özen, Ph. Goldner, J. P. Denis, and F. Pellé, “Infrared to blue upconversion fluorescence in heavy metal fluoride glass codoped with Tm3+ and Yb3+ ions,” J. Phys. Chem. Solids 55, 677–682 (1994).
[CrossRef]

Pierce, J. W.

N. Menyuk, K. Dwight, and J. W. Pierce, “NaYF4:Yb, Er—an efficient upconversion phosphor,” Appl. Phys. Lett. 21, 159–161 (1972).
[CrossRef]

Pinnow, D. A.

T. C. Rich and D. A. Pinnow, “Exploring the ultimate efficiency in infrared-to-visible converting phosphors activated with Er and sensitized with Yb,” J. Appl. Phys. 43, 2357–2365 (1972).
[CrossRef]

Ralston, J.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Rich, T. C.

T. C. Rich and D. A. Pinnow, “Exploring the ultimate efficiency in infrared-to-visible converting phosphors activated with Er and sensitized with Yb,” J. Appl. Phys. 43, 2357–2365 (1972).
[CrossRef]

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43, 1125–1137 (1972).
[CrossRef]

Sarver, J. F.

R. A. Hewes and J. F. Sarver, “Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides,” Phys. Rev. 182, 427–436 (1969).
[CrossRef]

Shionoya, S.

Y. Mita, H. Yamamoto, K. Katayanagi, and S. Shionoya, “Energy transfer processes in Er3+- and Yb3+-doped infrared upconversion materials,” J. Appl. Phys. 78, 1219–1223 (1995).
[CrossRef]

Sibley, W. A.

D. C. Yeh, W. A. Sibley, and M. J. Suscavage, “Efficient frequency upconversion of Tm3+ ions in Yb3+ doped barium-thorium-fluoride glass,” J. Appl. Phys. 63, 4644–4650 (1988).
[CrossRef]

Sommerdijk, J. L.

A. Bril, J. L. Sommerdijk, and A. W. de Jager, “On the efficiency of Yb3+–Er3+ activated up-conversion phosphors,” J. Electrochem. Soc. 122, 660–663 (1974).
[CrossRef]

Suscavage, M. J.

D. C. Yeh, W. A. Sibley, and M. J. Suscavage, “Efficient frequency upconversion of Tm3+ ions in Yb3+ doped barium-thorium-fluoride glass,” J. Appl. Phys. 63, 4644–4650 (1988).
[CrossRef]

van der Ziel, J. P.

J. E. Geusic, F. W. Ostermayer, H. M. Marcos, L. G. Van Uitert, and J. P. van der Ziel, “Efficiency of red, green, and blue infrared-to-visible conversion sources,” J. Appl. Phys. 42, 1958–1960 (1971).
[CrossRef]

Van Uitert, L. G.

J. E. Geusic, F. W. Ostermayer, H. M. Marcos, L. G. Van Uitert, and J. P. van der Ziel, “Efficiency of red, green, and blue infrared-to-visible conversion sources,” J. Appl. Phys. 42, 1958–1960 (1971).
[CrossRef]

Wang, Y.

Y. Wang and J. Ohwaki, “High-efficiency infrared-to-visible conversion of Er3+ in BaCl2,” J. Appl. Phys. 74, 1272–1278 (1993).
[CrossRef]

Wittke, J. P.

J. P. Wittke, I. Ladany, and P. N. Yocom, “Y2O3:Yb:Er:—new red-emitting infrared-excited phosphor,” J. Appl. Phys. 43, 595–600 (1972).
[CrossRef]

P. N. Yocom, J. P. Wittke, and I. Ladany, “Rare-earth-doped oxysulfides for GaAs-pumped luminescent devices,” Metall. Trans. A 2, 763–767 (1971).
[CrossRef]

J. P. Wittke, I. Ladany, and P. N. Yocom, “Properties of a blue-emitting IR pumped YF3:Yb, Tm diode,” Proc. IEEE 58, 1283–1285 (1970).
[CrossRef]

Wu, Xu

G. Özen, J. P. Denis, Xu Wu, F. Pellé, and B. Blanzat, “Upconversion luminescence of Tm3+ in Yb3+-doped fluorophosphate glasses under 683 nm excitation,” J. Non-Cryst. Solids 176, 147–156 (1994).
[CrossRef]

Yamamoto, H.

Y. Mita, H. Yamamoto, K. Katayanagi, and S. Shionoya, “Energy transfer processes in Er3+- and Yb3+-doped infrared upconversion materials,” J. Appl. Phys. 78, 1219–1223 (1995).
[CrossRef]

T. Kano, H. Yamamoto, and Y. Otomo, “NaLnF4:Yb3+, Er3+ (Ln:Y, Gd, La): efficient green-emitting infrared-excited phosphors,” J. Electrochem. Soc. 119, 1561–1564 (1972).
[CrossRef]

Yeh, D. C.

D. C. Yeh, W. A. Sibley, and M. J. Suscavage, “Efficient frequency upconversion of Tm3+ ions in Yb3+ doped barium-thorium-fluoride glass,” J. Appl. Phys. 63, 4644–4650 (1988).
[CrossRef]

Yocom, P. N.

J. P. Wittke, I. Ladany, and P. N. Yocom, “Y2O3:Yb:Er:—new red-emitting infrared-excited phosphor,” J. Appl. Phys. 43, 595–600 (1972).
[CrossRef]

P. N. Yocom, J. P. Wittke, and I. Ladany, “Rare-earth-doped oxysulfides for GaAs-pumped luminescent devices,” Metall. Trans. A 2, 763–767 (1971).
[CrossRef]

J. P. Wittke, I. Ladany, and P. N. Yocom, “Properties of a blue-emitting IR pumped YF3:Yb, Tm diode,” Proc. IEEE 58, 1283–1285 (1970).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

N. Menyuk, K. Dwight, and J. W. Pierce, “NaYF4:Yb, Er—an efficient upconversion phosphor,” Appl. Phys. Lett. 21, 159–161 (1972).
[CrossRef]

J. D. Kingsley, G. E. Fenner, and S. V. Galginaitis, “Kinetics and efficiency of infrared-to-visible conversion in LaF3:Yb, Er,” Appl. Phys. Lett. 15, 115–117 (1969).
[CrossRef]

J. Appl. Phys. (10)

E. Okamoto, H. Masui, K. Muto, and K. Awazu, “Nonresonant energy transfer from Er3+ to Yb3+ in LaF3,” J. Appl. Phys. 43, 2122–2123 (1972).
[CrossRef]

J. P. Wittke, I. Ladany, and P. N. Yocom, “Y2O3:Yb:Er:—new red-emitting infrared-excited phosphor,” J. Appl. Phys. 43, 595–600 (1972).
[CrossRef]

Y. Mita, H. Yamamoto, K. Katayanagi, and S. Shionoya, “Energy transfer processes in Er3+- and Yb3+-doped infrared upconversion materials,” J. Appl. Phys. 78, 1219–1223 (1995).
[CrossRef]

J. E. Geusic, F. W. Ostermayer, H. M. Marcos, L. G. Van Uitert, and J. P. van der Ziel, “Efficiency of red, green, and blue infrared-to-visible conversion sources,” J. Appl. Phys. 42, 1958–1960 (1971).
[CrossRef]

D. C. Yeh, W. A. Sibley, and M. J. Suscavage, “Efficient frequency upconversion of Tm3+ ions in Yb3+ doped barium-thorium-fluoride glass,” J. Appl. Phys. 63, 4644–4650 (1988).
[CrossRef]

T. C. Rich and D. A. Pinnow, “Exploring the ultimate efficiency in infrared-to-visible converting phosphors activated with Er and sensitized with Yb,” J. Appl. Phys. 43, 2357–2365 (1972).
[CrossRef]

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43, 1125–1137 (1972).
[CrossRef]

Y. Wang and J. Ohwaki, “High-efficiency infrared-to-visible conversion of Er3+ in BaCl2,” J. Appl. Phys. 74, 1272–1278 (1993).
[CrossRef]

Y. Mita, “Luminescence processes in Yb3+-sensitized rare-earth phosphors,” J. Appl. Phys. 43, 1772–1778 (1972).
[CrossRef]

J. D. Kingsley, “Analysis of energy transfer and infrared-to-visible conversion in LaF3:Yb, Er,” J. Appl. Phys. 41, 175–182 (1970).
[CrossRef]

J. Electrochem. Soc. (3)

A. Bril, J. L. Sommerdijk, and A. W. de Jager, “On the efficiency of Yb3+–Er3+ activated up-conversion phosphors,” J. Electrochem. Soc. 122, 660–663 (1974).
[CrossRef]

F. Auzel, D. Pecile, and D. Morin, “Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared upconversion,” J. Electrochem. Soc. 122, 101–107 (1975).
[CrossRef]

T. Kano, H. Yamamoto, and Y. Otomo, “NaLnF4:Yb3+, Er3+ (Ln:Y, Gd, La): efficient green-emitting infrared-excited phosphors,” J. Electrochem. Soc. 119, 1561–1564 (1972).
[CrossRef]

J. Lumin. (2)

M. A. Chamarro and R. Cases, “Infrared to visible upconversion of Er3+ in Yb3+ doped fluorohafnate glasses,” J. Lumin. 46, 59–65 (1990).
[CrossRef]

F. Auzel and D. Pecile, “Comparison and efficiency of materials for summation of photons assisted by energy transfer,” J. Lumin. 8, 32–43 (1973).
[CrossRef]

J. Non-Cryst. Solids (1)

G. Özen, J. P. Denis, Xu Wu, F. Pellé, and B. Blanzat, “Upconversion luminescence of Tm3+ in Yb3+-doped fluorophosphate glasses under 683 nm excitation,” J. Non-Cryst. Solids 176, 147–156 (1994).
[CrossRef]

J. Phys. Chem. Solids (1)

A. Kermaoui, G. Özen, Ph. Goldner, J. P. Denis, and F. Pellé, “Infrared to blue upconversion fluorescence in heavy metal fluoride glass codoped with Tm3+ and Yb3+ ions,” J. Phys. Chem. Solids 55, 677–682 (1994).
[CrossRef]

Metall. Trans. A (2)

F. W. Ostermayer, “Preparation and properties of infrared-to-visible conversion phosphors,” Metall. Trans. A 2, 747–755 (1971).
[CrossRef]

P. N. Yocom, J. P. Wittke, and I. Ladany, “Rare-earth-doped oxysulfides for GaAs-pumped luminescent devices,” Metall. Trans. A 2, 763–767 (1971).
[CrossRef]

Phys. Rev. (1)

R. A. Hewes and J. F. Sarver, “Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides,” Phys. Rev. 182, 427–436 (1969).
[CrossRef]

Phys. Rev. Lett. (1)

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2, 84–85 (1959).
[CrossRef]

Proc. IEEE (2)

F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–788 (1973).
[CrossRef]

J. P. Wittke, I. Ladany, and P. N. Yocom, “Properties of a blue-emitting IR pumped YF3:Yb, Tm diode,” Proc. IEEE 58, 1283–1285 (1970).
[CrossRef]

Science (1)

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Other (6)

TOKIN IR catcher (Tokin America, 155 Nicholson Lane, San Jose, California 95134); LLNL internal characterization with X-ray diffraction.

F. Heine, V. Ostroumov, E. Heumann, T. Jensen, G. Huber, and B. H. T. Chai, “CW Yb, Tm:YLF upconversion laser at 650 nm, 800 nm, and 1500 nm,” Advanced Solid-State Lasers, B. Chai and S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 77–79; P. Xie and T. R. Gosnell, “Diode-pumped, CW, blue, green, orange, and red upconversion fiber lasers operating at room temperature,” in Advanced Solid-State Lasers, B. Chai and S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 101–105.

H. Chou, P. Albers, A. Cassanho, and H. Jenssen, “CW Tunable Laser Emission of Nd3+:Na0.4Y0.6F2.2,” in Tunable Solid State Lasers, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1986), p. 322.

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, Fla., 1996), p. 275.

J. Wright, “Up-conversion and excited state energy transfer in rare-earth doped materials,” in Radiationless Processes in Molecules and Condensed Phases, Vol. 15 of Topics in Applied Physics, F. K. Fong, ed. (Springer, New York, 1976), Chap. 4, pp. 239–295.
[CrossRef]

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994), p. 281.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental apparatus used to acquire the power conversion efficiency of the phosphors listed in Table 1. Multimode fiber coupling provides a flattop pump-intensity profile. Calibration of the integrating-sphere/photodiode responsivity is accomplished with a series of low-power cw lasers at various wavelengths and a sensitive powermeter. (b) Detail of sample holder designed for use with powder samples. (c) Fiber-fed optical multichannel analyzer setup for recording and calibrating phosphor emission spectra. The tungsten filament temperature is measured with a disappearing-filament pyrometer.

Fig. 2
Fig. 2

Spectrally corrected emission spectra obtained for the phosphor materials listed in Table 1, recorded at approximately the maximum Ti:sapphire laser pump power with the 200-μm fiber used for delivery of the pump light. Spectra of the phosphors designated as green, red, and blue appear in frames (a), (b), and (c), respectively. See Table 1 for nominal sample compositions.

Fig. 3
Fig. 3

Calibrated power-conversion efficiencies obtained for the phosphor materials using a Ti:sapphire laser pump tuned to the wavelength corresponding to optimum efficiency (near 980 nm). The phosphors designated as green, red, and blue appear in parts (a), (b), and (c), respectively. The efficiency scale (ordinate) includes normalization for the fraction of pump power absorbed in the phosphor, while the abscissa represents incident pump intensity at the fiber face, without a fraction-absorbed correction.

Fig. 4
Fig. 4

Energy-level diagram depicting the pumping, radiation, cross-relaxation, and upconversion mechanisms relating to (a) green-emitting Yb,Er phosphors, (b) additional processes affecting the Yb,Er red phosphors, and (c) Yb,Tm blue emitters. In each case, upconversion-pumping of the visible-luminescing species occurs by energy transfer from excited Yb3+ ions. Pumping and upconversion transitions are indicated with solid straight lines; wavy lines denote radiation; zigzag lines show radiationless decay; dashed lines represent cross relaxation.

Fig. 5
Fig. 5

Best fit to the Na2Y3F11:Yb,Er single-crystal power-conversion efficiency data shown in Fig. 2(a), based on the use of Eqs. (7) and (9), along with the definitions noted in Tables 2 and 3. The adjustable parameters were the Er upconversion constant γupc, and the cross-relaxation-rate coefficients γ3/2x (Er–Er) and γ3/2Y (Er–Yb.) The rest of the input quantities are listed in Table 3.

Tables (3)

Tables Icon

Table 1 Powder and Crystalline Phosphor Samples Studied in the Present Work

Tables Icon

Table 2 Definitions and Values of Derived Parameters

Tables Icon

Table 3 Values of Mechanistic Constants Used to Fit the Na2Y3F11:Yb,Er Single-Crystal Efficiency Data of Fig. 5

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

FA=1-10-OD,
R+T+FA=1,
FA=1-(R975+T975)/(R1040+T1040).
N3/2E=γupcN11/2EN5/2Yτ3/2,
(N7/2YN11/2E/N5/2YN15/2E)=(Z7/2YZ11/2E/Z5/2YZ15/2E)exp(-ΔE/kT).
N5/2Y=αpIpτeq/hvpNYbIp/IsatNYbIp,
N3/2E/τrad=γupcN15/2ENYb(τ3/2/τrad)(Ip)2,
N15/2E=NEr-N13/2E.
dN13/2E/dt=0=(β11/2/τ11/2)N11/2E-N13/2E/τ13/2+β3/2N3/2E/τrad+γ3/2xN3/2EN15/2E+γ3/2YN3/2ENYb,
Fcasc(β11/2/τ11/2)τ13/2,
Ffill(β3/2/τrad)τ13/2,
Fcrossγ3/2xNErτ13/2,
Fbackγ3/2YNYbτ13/2,
FupcγupcNYbτ3/2,
N13/2E=FcascN11/2E+(Ffill+Fback)N3/2E+(Fcross/NEr)×(NEr-N13/2E)N3/2E.
0=-NEr+[1+FcascIp+Fupc(Ffill+Fback)(Ip)2](NEr-N13/2E)+(FcrossFupc/NEr)(Ip)2(NEr-N13/2E)2.
ηgreen=N3/2Eβgreenhvgreen/τradαpIp,
ηgreen=γupc(NEr-N13/2E)τeq(Ip)×(τ3/2/τrad)βgreen(hvgreen/hvpump).
τ3/2-1=τrad-1+γ3/2xNEr+γ3/2YNYb,
Isat=hν/(στ).

Metrics