Abstract

We report the generation of 10.0-fs optical pulses at a center wavelength of 438 nm by extracavity frequency doubling of a 10–11-fs Ti:sapphire laser followed by prism–grating dispersion compensation. To our knowledge these are the shortest pulses that have been generated in the blue region of the spectrum. We argue that the value of 10.0 fs is still limited by the 20-μm thickness of the freestanding autocorrelator doubling crystal. The well-behaved laser spectrum supports a 7.6-fs pulse. Studies of both the generation and the autocorrelator second-harmonic crystal thickness are presented.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, Appl. Phys. Lett. 58, 801 (1991).
    [CrossRef]
  2. S. Backus, M. T. Asaki, C. Shi, H. C. Kapteyn, and M. M. Murnane, Opt. Lett. 19, 399 (1994).
    [PubMed]
  3. S. H. Ashworth, M. Joschko, M. Woerner, E. Riedle, and T. Elsässer, Opt. Lett. 20, 2120 (1995).
    [CrossRef] [PubMed]
  4. M. T. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, Opt. Lett. 18, 977 (1993).
    [CrossRef] [PubMed]
  5. E. B. Treacy, IEEE J. Quantum Electron. QE–9, 454 (1969).
    [CrossRef]
  6. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
  7. F. Hache, T. J. Driscoll, M. Cavallari, and G. M. Gale, Appl. Opt. 35, 3220 (1996).
    [CrossRef]

1996

F. Hache, T. J. Driscoll, M. Cavallari, and G. M. Gale, Appl. Opt. 35, 3220 (1996).
[CrossRef]

1995

1994

1993

1991

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, Appl. Phys. Lett. 58, 801 (1991).
[CrossRef]

1969

E. B. Treacy, IEEE J. Quantum Electron. QE–9, 454 (1969).
[CrossRef]

Asaki, M. T.

Ashworth, S. H.

Backus, S.

Bigot, J.-Y.

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, Appl. Phys. Lett. 58, 801 (1991).
[CrossRef]

Cavallari, M.

F. Hache, T. J. Driscoll, M. Cavallari, and G. M. Gale, Appl. Opt. 35, 3220 (1996).
[CrossRef]

Driscoll, T. J.

F. Hache, T. J. Driscoll, M. Cavallari, and G. M. Gale, Appl. Opt. 35, 3220 (1996).
[CrossRef]

Elsässer, T.

Gale, G. M.

F. Hache, T. J. Driscoll, M. Cavallari, and G. M. Gale, Appl. Opt. 35, 3220 (1996).
[CrossRef]

Garvey, D.

Hache, F.

F. Hache, T. J. Driscoll, M. Cavallari, and G. M. Gale, Appl. Opt. 35, 3220 (1996).
[CrossRef]

Huang, C.

Joschko, M.

Kapteyn, H. C.

Murnane, M. M.

Portella, M. T.

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, Appl. Phys. Lett. 58, 801 (1991).
[CrossRef]

Riedle, E.

Schoenlein, R. W.

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, Appl. Phys. Lett. 58, 801 (1991).
[CrossRef]

Shank, C. V.

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, Appl. Phys. Lett. 58, 801 (1991).
[CrossRef]

Shi, C.

Treacy, E. B.

E. B. Treacy, IEEE J. Quantum Electron. QE–9, 454 (1969).
[CrossRef]

Woerner, M.

Zhou, J.

Appl. Opt.

F. Hache, T. J. Driscoll, M. Cavallari, and G. M. Gale, Appl. Opt. 35, 3220 (1996).
[CrossRef]

Appl. Phys. Lett.

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, Appl. Phys. Lett. 58, 801 (1991).
[CrossRef]

IEEE J. Quantum Electron.

E. B. Treacy, IEEE J. Quantum Electron. QE–9, 454 (1969).
[CrossRef]

Opt. Lett.

Other

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Intensity autocorrelation (IA) on linear and logarithmic scales and (b) laser spectrum of the 10.0-fs (FWHM) pulses centered around 438-nm wavelength with a 40-μm-thick BBO crystal for SHG and a 20-μm-thick BBO crystal for the autocorrelator. The spectral bandwidth (FWHM) is 166 meV.

Fig. 2
Fig. 2

(a) Intensity autocorrelation (IA) on linear and logarithmic scales and (b) laser spectrum of the 11.0-fs pulses centered around 438-nm wavelength with 100-μm-thick BBO crystal for SHG and a 20-μm-thick BBO crystal for the autocorrelator.

Fig. 3
Fig. 3

Laser spectrum of the 11.0-fs pulses with a 100-μm-thick BBO crystal for SHG for various angles between the incident beam and the optic axis of the BBO crystal: ΔΘ=-2, 0, +2° from left to right. ΔΘ=0° corresponds to the center wavelength of 438 nm and a maximum power of the SHG. Notice the different shapes and the smaller FWHM of the spectra shifted away from the center wavelength (FWHM of 138, 157, and 138 meV from left to right). All spectra are normalized to the same peak value.

Fig. 4
Fig. 4

Intensity autocorrelation (IA) of the 11.0-fs pulses with 20- and 100-μm-thick BBO crystals for the autocorrelator. Using the thicker BBO crystal clearly hides details of the pulse shape.

Fig. 5
Fig. 5

Field autocorrelation (FA) of the 11.0-fs pulses with (a) a 20-μm-thick BBO crystal and (b) a 100-μm-thick BBO crystal for the autocorrelator. The insets show details of the interference near zero time delay. Notice the more rapid oscillations in the wings, which are very pronounced for the thicker crystal.

Tables (1)

Tables Icon

Table 1 Spectral Bandwidth ΔE for Frequency Doubling in BBO Calculated by Eq. (1)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ=λ11-cLdn0(ω)dλ-dne(Θ, 2ω)dλ0.443+cLdn0(ω)dλ-dne(Θ, 2ω)dλ,

Metrics