Abstract

The recording density limit of a near-field optical memory that uses a photochromic medium was theoretically studied by use of Shannon’s information theory. Shot noise and material noise were taken into account in the analysis of the signal-to-noise ratio. The conventional recording density limit, which is defined by the inverse of the minimum recorded mark area, and Shannon’s recording density limit were evaluated. The conventional recording density limit was 10111012 bits/cm2, and Shannon’s recording density limit was 10121013 bits/cm2.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Haase, “Blue-green II–V laser diodes: progress in reliability,” presented at the International Symposium on Optical Memory Optical Data Storage, Maui, Hawaii, July 8–12, 1996.
  2. J. Hirokane, Y. Murakami, H. Katayama, A. Takahashi, K. Ohta, and H. Yamaoka, “Recording characteristics of a magnet-optical super-resolution disk,” presented at the Symposium on Optical Memory, Tokyo, Japan, July 11–13, 1994.
  3. A. Fukumoto and S. Kubota, “Superresolution of optical disks using a small aperture,” Jpn. J. Appl. Phys. 31, 529 (1992).
    [CrossRef]
  4. G. Bouwhuis and J. H. M. Spruit, “Optical storage read-out of nonlinear disks,” Appl. Opt. 29, 3776 (1990).
    [CrossRef]
  5. T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Super-resolution with a photochromic mask layer in an optical memory,” Opt. Rev. 2, 181 (1995).
    [CrossRef]
  6. T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution using saturable absorption dye,” Opt. Rev. 2, 225 (1995).
    [CrossRef]
  7. T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys. 36, 526 (1997).
    [CrossRef]
  8. T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev. 4, 655 (1997).
    [CrossRef]
  9. T. Tanaka, K. Kawata, and S. Kawata, “Three-dimensional multi-layered optical memory with laser scanning microscope technology,” presented at the Symposium on Optical Memory, Tokyo, Japan, July 11–13, 1994.
  10. J. H. Strickler and W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780 (1991).
    [CrossRef] [PubMed]
  11. S. Hunter, F. Kiamilev, S. Esener, D. Parthenopoulos, and P. M. Rentzepis, “Potentials of two-photon based 3-D optical memories for high performance computing,” Appl. Opt. 29, 2058 (1990).
    [CrossRef] [PubMed]
  12. K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical storage,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chan, and K. Ogawa, eds., Proc. SPIE 2338, 247 (1994).
    [CrossRef]
  13. M. Suzuki, T. Hashida, J. Hibino, and Y. Kishimoto, “Multiple optical memory using photochromic spiropyran aggregates,” Mol. Cryst. Liq. Cryst. Lett. 246, 389 (1994).
    [CrossRef]
  14. T. Tsujioka, Y. Shimizu, and M. Irie, “Crosstalk in photon-mode photochromic multi-wavelength recording,” Jpn. J. Appl. Phys. 33, 1914 (1994).
    [CrossRef]
  15. T. Tsujioka, M. Kume, and M. Irie, “Optical density dependence of write/read characteristics in photon-mode-photochromic memory,” Jpn. J. Appl. Phys. 35, 4353 (1996).
    [CrossRef]
  16. Y. Shimpuku, Y. Akiyama, T. Kashiwagi, H. Ino, and Y. Chaki, “A new channel coding and SHG green laser for high density optical disk,” presented at the Symposium on Optical Memory, Yokohama, Japan, July 13–15, 1992.
  17. S. Tazaki, “Recording code and signal processing for optical storage,” presented at the Symposium on Optical Memory, Tokyo, Japan, July 11–13, 1994.
  18. D. G. Crowe, “Near-field optical disk recording for very high data density,” Appl. Opt. 30, 4480 (1991).
    [CrossRef] [PubMed]
  19. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, and P. L. Finn, “Near-field magnet-optics and high density data storage,” Appl. Phys. Lett. 61, 142 (1993).
    [CrossRef]
  20. S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, and M. Ohtsu, “Highly localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope,” Opt. Commun. 106, 173 (1994).
    [CrossRef]
  21. M. Hamano and M. Irie, “Rewritable near-field optical recording on photochromic thin films,” Jpn. J. Appl. Phys. 35, 1764 (1996).
    [CrossRef]
  22. F. Tatezono, T. Harada, Y. Shimizu, M. Ohara, and M. Irie, “Photochromic rewritable memory media: a new nondestructive readout method,” Jpn. J. Appl. Phys. 32, 3987 (1993).
    [CrossRef]
  23. M. Irie, ed., Photo-Reactive Materials for Ultrahigh Density Optical Memory (Elsevier, Amsterdam, 1994).
  24. N. Murase, K. Horie, M. Terao, and M. Ojima, “Theoretical study of the recording density limit of photochemical hole-burning memory,” J. Opt. Soc. Am. B 9, 998 (1992).
    [CrossRef]
  25. T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and super-low power readout of photon-mode photochromic memory,” Jpn. J. Appl. Phys. 33, 5788 (1994).
    [CrossRef]
  26. T. Tsujioka, M. Kume, and M. Irie, “Super-low power readout characteristics of photochromic memory,” Jpn. J. Appl. Phys. 34, 6439 (1995).
    [CrossRef]
  27. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379 (1948).
    [CrossRef]
  28. K. Uchida, M. Irie, T. Eriguchi, and H. Tsuzuki, “Photochromism of single crystalline diarylethenes,” Chem. Lett., 899 (1995).

1997 (2)

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys. 36, 526 (1997).
[CrossRef]

T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev. 4, 655 (1997).
[CrossRef]

1996 (2)

T. Tsujioka, M. Kume, and M. Irie, “Optical density dependence of write/read characteristics in photon-mode-photochromic memory,” Jpn. J. Appl. Phys. 35, 4353 (1996).
[CrossRef]

M. Hamano and M. Irie, “Rewritable near-field optical recording on photochromic thin films,” Jpn. J. Appl. Phys. 35, 1764 (1996).
[CrossRef]

1995 (4)

T. Tsujioka, M. Kume, and M. Irie, “Super-low power readout characteristics of photochromic memory,” Jpn. J. Appl. Phys. 34, 6439 (1995).
[CrossRef]

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Super-resolution with a photochromic mask layer in an optical memory,” Opt. Rev. 2, 181 (1995).
[CrossRef]

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution using saturable absorption dye,” Opt. Rev. 2, 225 (1995).
[CrossRef]

K. Uchida, M. Irie, T. Eriguchi, and H. Tsuzuki, “Photochromism of single crystalline diarylethenes,” Chem. Lett., 899 (1995).

1994 (5)

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical storage,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chan, and K. Ogawa, eds., Proc. SPIE 2338, 247 (1994).
[CrossRef]

M. Suzuki, T. Hashida, J. Hibino, and Y. Kishimoto, “Multiple optical memory using photochromic spiropyran aggregates,” Mol. Cryst. Liq. Cryst. Lett. 246, 389 (1994).
[CrossRef]

T. Tsujioka, Y. Shimizu, and M. Irie, “Crosstalk in photon-mode photochromic multi-wavelength recording,” Jpn. J. Appl. Phys. 33, 1914 (1994).
[CrossRef]

S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, and M. Ohtsu, “Highly localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope,” Opt. Commun. 106, 173 (1994).
[CrossRef]

T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and super-low power readout of photon-mode photochromic memory,” Jpn. J. Appl. Phys. 33, 5788 (1994).
[CrossRef]

1993 (2)

F. Tatezono, T. Harada, Y. Shimizu, M. Ohara, and M. Irie, “Photochromic rewritable memory media: a new nondestructive readout method,” Jpn. J. Appl. Phys. 32, 3987 (1993).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, and P. L. Finn, “Near-field magnet-optics and high density data storage,” Appl. Phys. Lett. 61, 142 (1993).
[CrossRef]

1992 (2)

1991 (2)

1990 (2)

1948 (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379 (1948).
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, and P. L. Finn, “Near-field magnet-optics and high density data storage,” Appl. Phys. Lett. 61, 142 (1993).
[CrossRef]

Bouwhuis, G.

G. Bouwhuis and J. H. M. Spruit, “Optical storage read-out of nonlinear disks,” Appl. Opt. 29, 3776 (1990).
[CrossRef]

Crowe, D. G.

Eriguchi, T.

K. Uchida, M. Irie, T. Eriguchi, and H. Tsuzuki, “Photochromism of single crystalline diarylethenes,” Chem. Lett., 899 (1995).

Esener, S.

Finn, P. L.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, and P. L. Finn, “Near-field magnet-optics and high density data storage,” Appl. Phys. Lett. 61, 142 (1993).
[CrossRef]

Fujihira, M.

S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, and M. Ohtsu, “Highly localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope,” Opt. Commun. 106, 173 (1994).
[CrossRef]

Fukumoto, A.

A. Fukumoto and S. Kubota, “Superresolution of optical disks using a small aperture,” Jpn. J. Appl. Phys. 31, 529 (1992).
[CrossRef]

Gyorgy, E. M.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, and P. L. Finn, “Near-field magnet-optics and high density data storage,” Appl. Phys. Lett. 61, 142 (1993).
[CrossRef]

Hamano, M.

M. Hamano and M. Irie, “Rewritable near-field optical recording on photochromic thin films,” Jpn. J. Appl. Phys. 35, 1764 (1996).
[CrossRef]

Harada, T.

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Super-resolution with a photochromic mask layer in an optical memory,” Opt. Rev. 2, 181 (1995).
[CrossRef]

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution using saturable absorption dye,” Opt. Rev. 2, 225 (1995).
[CrossRef]

T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and super-low power readout of photon-mode photochromic memory,” Jpn. J. Appl. Phys. 33, 5788 (1994).
[CrossRef]

F. Tatezono, T. Harada, Y. Shimizu, M. Ohara, and M. Irie, “Photochromic rewritable memory media: a new nondestructive readout method,” Jpn. J. Appl. Phys. 32, 3987 (1993).
[CrossRef]

Hashida, T.

M. Suzuki, T. Hashida, J. Hibino, and Y. Kishimoto, “Multiple optical memory using photochromic spiropyran aggregates,” Mol. Cryst. Liq. Cryst. Lett. 246, 389 (1994).
[CrossRef]

Hibino, J.

M. Suzuki, T. Hashida, J. Hibino, and Y. Kishimoto, “Multiple optical memory using photochromic spiropyran aggregates,” Mol. Cryst. Liq. Cryst. Lett. 246, 389 (1994).
[CrossRef]

Horie, K.

Horikawa, Y.

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys. 36, 526 (1997).
[CrossRef]

Hunter, S.

Ichihashi, J.

S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, and M. Ohtsu, “Highly localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope,” Opt. Commun. 106, 173 (1994).
[CrossRef]

Imaino, W.

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical storage,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chan, and K. Ogawa, eds., Proc. SPIE 2338, 247 (1994).
[CrossRef]

Irie, M.

T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev. 4, 655 (1997).
[CrossRef]

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys. 36, 526 (1997).
[CrossRef]

M. Hamano and M. Irie, “Rewritable near-field optical recording on photochromic thin films,” Jpn. J. Appl. Phys. 35, 1764 (1996).
[CrossRef]

T. Tsujioka, M. Kume, and M. Irie, “Optical density dependence of write/read characteristics in photon-mode-photochromic memory,” Jpn. J. Appl. Phys. 35, 4353 (1996).
[CrossRef]

T. Tsujioka, M. Kume, and M. Irie, “Super-low power readout characteristics of photochromic memory,” Jpn. J. Appl. Phys. 34, 6439 (1995).
[CrossRef]

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Super-resolution with a photochromic mask layer in an optical memory,” Opt. Rev. 2, 181 (1995).
[CrossRef]

K. Uchida, M. Irie, T. Eriguchi, and H. Tsuzuki, “Photochromism of single crystalline diarylethenes,” Chem. Lett., 899 (1995).

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution using saturable absorption dye,” Opt. Rev. 2, 225 (1995).
[CrossRef]

T. Tsujioka, Y. Shimizu, and M. Irie, “Crosstalk in photon-mode photochromic multi-wavelength recording,” Jpn. J. Appl. Phys. 33, 1914 (1994).
[CrossRef]

T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and super-low power readout of photon-mode photochromic memory,” Jpn. J. Appl. Phys. 33, 5788 (1994).
[CrossRef]

F. Tatezono, T. Harada, Y. Shimizu, M. Ohara, and M. Irie, “Photochromic rewritable memory media: a new nondestructive readout method,” Jpn. J. Appl. Phys. 32, 3987 (1993).
[CrossRef]

Ishikawa, A.

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys. 36, 526 (1997).
[CrossRef]

Jiang, S.

S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, and M. Ohtsu, “Highly localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope,” Opt. Commun. 106, 173 (1994).
[CrossRef]

Kiamilev, F.

Kishimoto, Y.

M. Suzuki, T. Hashida, J. Hibino, and Y. Kishimoto, “Multiple optical memory using photochromic spiropyran aggregates,” Mol. Cryst. Liq. Cryst. Lett. 246, 389 (1994).
[CrossRef]

Kubota, S.

A. Fukumoto and S. Kubota, “Superresolution of optical disks using a small aperture,” Jpn. J. Appl. Phys. 31, 529 (1992).
[CrossRef]

Kume, M.

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys. 36, 526 (1997).
[CrossRef]

T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev. 4, 655 (1997).
[CrossRef]

T. Tsujioka, M. Kume, and M. Irie, “Optical density dependence of write/read characteristics in photon-mode-photochromic memory,” Jpn. J. Appl. Phys. 35, 4353 (1996).
[CrossRef]

T. Tsujioka, M. Kume, and M. Irie, “Super-low power readout characteristics of photochromic memory,” Jpn. J. Appl. Phys. 34, 6439 (1995).
[CrossRef]

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Super-resolution with a photochromic mask layer in an optical memory,” Opt. Rev. 2, 181 (1995).
[CrossRef]

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution using saturable absorption dye,” Opt. Rev. 2, 225 (1995).
[CrossRef]

Kuroki, K.

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution using saturable absorption dye,” Opt. Rev. 2, 225 (1995).
[CrossRef]

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Super-resolution with a photochromic mask layer in an optical memory,” Opt. Rev. 2, 181 (1995).
[CrossRef]

T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and super-low power readout of photon-mode photochromic memory,” Jpn. J. Appl. Phys. 33, 5788 (1994).
[CrossRef]

Monobe, H.

S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, and M. Ohtsu, “Highly localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope,” Opt. Commun. 106, 173 (1994).
[CrossRef]

Murase, N.

Ohara, M.

F. Tatezono, T. Harada, Y. Shimizu, M. Ohara, and M. Irie, “Photochromic rewritable memory media: a new nondestructive readout method,” Jpn. J. Appl. Phys. 32, 3987 (1993).
[CrossRef]

Ohtsu, M.

S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, and M. Ohtsu, “Highly localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope,” Opt. Commun. 106, 173 (1994).
[CrossRef]

Ojima, M.

Parthenopoulos, D.

Rentzepis, P. M.

Rosen, H. J.

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical storage,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chan, and K. Ogawa, eds., Proc. SPIE 2338, 247 (1994).
[CrossRef]

Rubin, K. A.

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical storage,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chan, and K. Ogawa, eds., Proc. SPIE 2338, 247 (1994).
[CrossRef]

Shannon, C. E.

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379 (1948).
[CrossRef]

Shimizu, Y.

T. Tsujioka, Y. Shimizu, and M. Irie, “Crosstalk in photon-mode photochromic multi-wavelength recording,” Jpn. J. Appl. Phys. 33, 1914 (1994).
[CrossRef]

F. Tatezono, T. Harada, Y. Shimizu, M. Ohara, and M. Irie, “Photochromic rewritable memory media: a new nondestructive readout method,” Jpn. J. Appl. Phys. 32, 3987 (1993).
[CrossRef]

Spruit, J. H. M.

G. Bouwhuis and J. H. M. Spruit, “Optical storage read-out of nonlinear disks,” Appl. Opt. 29, 3776 (1990).
[CrossRef]

Strand, T. C.

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical storage,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chan, and K. Ogawa, eds., Proc. SPIE 2338, 247 (1994).
[CrossRef]

Strickler, J. H.

Suzuki, M.

M. Suzuki, T. Hashida, J. Hibino, and Y. Kishimoto, “Multiple optical memory using photochromic spiropyran aggregates,” Mol. Cryst. Liq. Cryst. Lett. 246, 389 (1994).
[CrossRef]

Tang, W. W.

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical storage,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chan, and K. Ogawa, eds., Proc. SPIE 2338, 247 (1994).
[CrossRef]

Tatezono, F.

T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and super-low power readout of photon-mode photochromic memory,” Jpn. J. Appl. Phys. 33, 5788 (1994).
[CrossRef]

F. Tatezono, T. Harada, Y. Shimizu, M. Ohara, and M. Irie, “Photochromic rewritable memory media: a new nondestructive readout method,” Jpn. J. Appl. Phys. 32, 3987 (1993).
[CrossRef]

Terao, M.

Trautman, J. K.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, and P. L. Finn, “Near-field magnet-optics and high density data storage,” Appl. Phys. Lett. 61, 142 (1993).
[CrossRef]

Tsujioka, T.

T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev. 4, 655 (1997).
[CrossRef]

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys. 36, 526 (1997).
[CrossRef]

T. Tsujioka, M. Kume, and M. Irie, “Optical density dependence of write/read characteristics in photon-mode-photochromic memory,” Jpn. J. Appl. Phys. 35, 4353 (1996).
[CrossRef]

T. Tsujioka, M. Kume, and M. Irie, “Super-low power readout characteristics of photochromic memory,” Jpn. J. Appl. Phys. 34, 6439 (1995).
[CrossRef]

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Super-resolution with a photochromic mask layer in an optical memory,” Opt. Rev. 2, 181 (1995).
[CrossRef]

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution using saturable absorption dye,” Opt. Rev. 2, 225 (1995).
[CrossRef]

T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and super-low power readout of photon-mode photochromic memory,” Jpn. J. Appl. Phys. 33, 5788 (1994).
[CrossRef]

T. Tsujioka, Y. Shimizu, and M. Irie, “Crosstalk in photon-mode photochromic multi-wavelength recording,” Jpn. J. Appl. Phys. 33, 1914 (1994).
[CrossRef]

Tsuzuki, H.

K. Uchida, M. Irie, T. Eriguchi, and H. Tsuzuki, “Photochromism of single crystalline diarylethenes,” Chem. Lett., 899 (1995).

Uchida, K.

K. Uchida, M. Irie, T. Eriguchi, and H. Tsuzuki, “Photochromism of single crystalline diarylethenes,” Chem. Lett., 899 (1995).

Webb, W. W.

Wolfe, R.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, and P. L. Finn, “Near-field magnet-optics and high density data storage,” Appl. Phys. Lett. 61, 142 (1993).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, and P. L. Finn, “Near-field magnet-optics and high density data storage,” Appl. Phys. Lett. 61, 142 (1993).
[CrossRef]

Bell Syst. Tech. J. (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379 (1948).
[CrossRef]

Chem. Lett. (1)

K. Uchida, M. Irie, T. Eriguchi, and H. Tsuzuki, “Photochromism of single crystalline diarylethenes,” Chem. Lett., 899 (1995).

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (8)

T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and super-low power readout of photon-mode photochromic memory,” Jpn. J. Appl. Phys. 33, 5788 (1994).
[CrossRef]

T. Tsujioka, M. Kume, and M. Irie, “Super-low power readout characteristics of photochromic memory,” Jpn. J. Appl. Phys. 34, 6439 (1995).
[CrossRef]

M. Hamano and M. Irie, “Rewritable near-field optical recording on photochromic thin films,” Jpn. J. Appl. Phys. 35, 1764 (1996).
[CrossRef]

F. Tatezono, T. Harada, Y. Shimizu, M. Ohara, and M. Irie, “Photochromic rewritable memory media: a new nondestructive readout method,” Jpn. J. Appl. Phys. 32, 3987 (1993).
[CrossRef]

T. Tsujioka, Y. Shimizu, and M. Irie, “Crosstalk in photon-mode photochromic multi-wavelength recording,” Jpn. J. Appl. Phys. 33, 1914 (1994).
[CrossRef]

T. Tsujioka, M. Kume, and M. Irie, “Optical density dependence of write/read characteristics in photon-mode-photochromic memory,” Jpn. J. Appl. Phys. 35, 4353 (1996).
[CrossRef]

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys. 36, 526 (1997).
[CrossRef]

A. Fukumoto and S. Kubota, “Superresolution of optical disks using a small aperture,” Jpn. J. Appl. Phys. 31, 529 (1992).
[CrossRef]

Mol. Cryst. Liq. Cryst. Lett. (1)

M. Suzuki, T. Hashida, J. Hibino, and Y. Kishimoto, “Multiple optical memory using photochromic spiropyran aggregates,” Mol. Cryst. Liq. Cryst. Lett. 246, 389 (1994).
[CrossRef]

Opt. Commun. (1)

S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, and M. Ohtsu, “Highly localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope,” Opt. Commun. 106, 173 (1994).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (3)

T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev. 4, 655 (1997).
[CrossRef]

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Super-resolution with a photochromic mask layer in an optical memory,” Opt. Rev. 2, 181 (1995).
[CrossRef]

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution using saturable absorption dye,” Opt. Rev. 2, 225 (1995).
[CrossRef]

Proc. SPIE (1)

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical storage,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chan, and K. Ogawa, eds., Proc. SPIE 2338, 247 (1994).
[CrossRef]

Other (6)

T. Tanaka, K. Kawata, and S. Kawata, “Three-dimensional multi-layered optical memory with laser scanning microscope technology,” presented at the Symposium on Optical Memory, Tokyo, Japan, July 11–13, 1994.

M. A. Haase, “Blue-green II–V laser diodes: progress in reliability,” presented at the International Symposium on Optical Memory Optical Data Storage, Maui, Hawaii, July 8–12, 1996.

J. Hirokane, Y. Murakami, H. Katayama, A. Takahashi, K. Ohta, and H. Yamaoka, “Recording characteristics of a magnet-optical super-resolution disk,” presented at the Symposium on Optical Memory, Tokyo, Japan, July 11–13, 1994.

M. Irie, ed., Photo-Reactive Materials for Ultrahigh Density Optical Memory (Elsevier, Amsterdam, 1994).

Y. Shimpuku, Y. Akiyama, T. Kashiwagi, H. Ino, and Y. Chaki, “A new channel coding and SHG green laser for high density optical disk,” presented at the Symposium on Optical Memory, Yokohama, Japan, July 13–15, 1992.

S. Tazaki, “Recording code and signal processing for optical storage,” presented at the Symposium on Optical Memory, Tokyo, Japan, July 11–13, 1994.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Model of a near-field optical readout system.

Fig. 2
Fig. 2

Signal and various noise current levels with the probe aperture diameter Φ for a thin recording layer.

Fig. 3
Fig. 3

Signal and various noise current levels with the probe aperture diameter Φ for a thick recording layer.

Fig. 4
Fig. 4

SNR with Φ for thin and thick recording layers.

Fig. 5
Fig. 5

Conventional and Shannon recording densities for the thin recording layer.

Fig. 6
Fig. 6

Conventional and Shannon recording densities for the thick recording layer.

Fig. 7
Fig. 7

Three-dimensional plot of the conventional recording density with Φ and B. Fprobe=2.0×106 W/cm2.

Fig. 8
Fig. 8

Three-dimensional plot of Shannon’s recording density with Φ and B. Fprobe=2.0×106 W/cm2.

Fig. 9
Fig. 9

Three-dimensional plot of the conventional recording density with Φ and B. Fprobe=1.0×105 W/cm2.

Fig. 10
Fig. 10

Three-dimensional plot of Shannon’s recording density with Φ and B. Fprobe=1.0×105 W/cm2.

Tables (1)

Tables Icon

Table 1 Parameters Used in the Theoretical Estimate and Related Equation Numbers

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

F=Fprobe exp(-d/Φ).
T=exp(-2.303×lC),
T=exp(-2.303×lC0).
I=Fprobe exp(-d/Φ) π4 Φ2γηT,
I0=Fprobe exp(-d/Φ) π4 Φ2γηT0,
IsignalFprobe exp(-d/Φ) π4 Φ2γη|exp(-2.303×lC)-exp(-2.303×lC0)|.
Ishot noise=2eBγηTFprobe exp(-d/Φ) π4 Φ21/2,
Ishot noise=π2 eBγη(T+T0)Fprobe exp(-d/Φ)Φ21/2.
N=NaCl π4 Φ2×10-3,
δN=N.
δT=|T(N+δN)-T(N)|=exp(-2.303lC)×1-exp-2.3034lC10-3πNaΦ21/2.
Imat noise=Fprobe exp(-d/Φ) π4 Φ2γηδT2+δT02.
Inoise=(Ishot noise2+Imat noise2)1/2=π2 Bγη(T+T0)Fprobe exp(-d/Φ)Φ2+Fprobe exp(-d/Φ) π4 Φ2γη2×(δT2+δT02)1/2.
SNR|exp(-2.303×lC)-exp(-2.303×lC0)|8πγηΦ2Fprobe B(T+T0)exp(d/Φ)+(δT2+δT02)1/2.
Dconv=Φ-2[bits/cm2],
channelcapacity=B log2(1+SNR)[bits/s].
DShannonchannelcapacityνΦ
=12Φ2 log2(1+SNR)[bits/cm2],
DShannon=12Φ2 log21+|exp(-2.303×lC)-exp(-2.303×lC0)|8πγηΦ2Fprobe B(T+T0)exp(d/Φ)+(δT2+δT02)1/2.

Metrics