Abstract

We measured the third-order susceptibilities χijkl3 of new bisdithiafulvenyl-substituted tetrathiafulvalene, using the degenerate four-wave mixing method. From these measurements we deduced the values of the second-order hyperpolarizabilities γ and their molecular and electronic contributions. We compared the third-order optical properties of these new extended tetrathiafulvalene derivatives with the properties of acetylenic and ethylenic analogs of tetrathiafulvalene that we studied previously. All organic molecules studied here revealed large third-order nonlinear optical hyperpolarizability.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Kazjar, J. Messier, and C. Rosilio, “Nonlinear optical properties of thin films of polysilane,” J. Appl. Phys. 60, 3040–3044 (1986).
    [CrossRef]
  2. J. Zyss, ed., Molecular Nonlinear Optics: Materials, Physics and Devices (Academic, Boston, Mass., 1994).
  3. G. I. Stegeman and A. Miller, Background and Components, Vol. 1 of Photonics in Switching, E. Midwinter, ed. (Academic, Boston, Mass., 1993).
  4. M. Sylla, J. Zaremba, R. Chevalier, G. Rivoire, A. Khanous, and A. Gorgues, “Third-order nonlinear optical susceptibility of acetylenic analogues of tetrathiafulvalene,” Synth. Met. 59, 111–121 (1993).
    [CrossRef]
  5. B. Sahraoui, M. Sylla, J. P. Bourdin, G. Rivoire, J. Zaremba, T. T. Nguyen, and M. Sallé, “Third-order nonlinear optical properties of ethylenic tetrathiafulvalene derivatives,” J. Mod. Opt. 42, 2095–2107 (1995).
    [CrossRef]
  6. B. Sahraoui, R. Chevalier, and G. Rivoire, “The influence of the concentration and the sample thickness of ethylenic tetrathiafulvalene derivatives on efficiency in degenerate four wave mixing,” Adv. Mater. Opt. Electron. 6, 343–347 (1996).
    [CrossRef]
  7. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).
  8. J. P. Bourdin, P. X. Nguyen, G. Rivoire, and J. M. Nunzi, “Polarisation properties of the orientational response in phase conjugation,” Nonlinear Opt. 7, 1–6 (1994).
  9. J. Zyss and D. S. Chemla, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Orlando, Fla., 1987).
  10. F. Kajzar and J. Messier, “Third-harmonic generation in liquids,” Phys. Rev. A 32, 2352–2363 (1985).
    [CrossRef] [PubMed]
  11. B. Sahraoui, R. Chevalier, G. Rivoire, and J. Zaremba, “Nonlinear optical properties of new hypertetrathiafulvalene derivatives: saturable absorption and degenerate four wave mixing,” Opt. Commun. 135, 109–115 (1997).
    [CrossRef]

1997 (1)

B. Sahraoui, R. Chevalier, G. Rivoire, and J. Zaremba, “Nonlinear optical properties of new hypertetrathiafulvalene derivatives: saturable absorption and degenerate four wave mixing,” Opt. Commun. 135, 109–115 (1997).
[CrossRef]

1996 (1)

B. Sahraoui, R. Chevalier, and G. Rivoire, “The influence of the concentration and the sample thickness of ethylenic tetrathiafulvalene derivatives on efficiency in degenerate four wave mixing,” Adv. Mater. Opt. Electron. 6, 343–347 (1996).
[CrossRef]

1995 (1)

B. Sahraoui, M. Sylla, J. P. Bourdin, G. Rivoire, J. Zaremba, T. T. Nguyen, and M. Sallé, “Third-order nonlinear optical properties of ethylenic tetrathiafulvalene derivatives,” J. Mod. Opt. 42, 2095–2107 (1995).
[CrossRef]

1994 (1)

J. P. Bourdin, P. X. Nguyen, G. Rivoire, and J. M. Nunzi, “Polarisation properties of the orientational response in phase conjugation,” Nonlinear Opt. 7, 1–6 (1994).

1993 (1)

M. Sylla, J. Zaremba, R. Chevalier, G. Rivoire, A. Khanous, and A. Gorgues, “Third-order nonlinear optical susceptibility of acetylenic analogues of tetrathiafulvalene,” Synth. Met. 59, 111–121 (1993).
[CrossRef]

1986 (1)

F. Kazjar, J. Messier, and C. Rosilio, “Nonlinear optical properties of thin films of polysilane,” J. Appl. Phys. 60, 3040–3044 (1986).
[CrossRef]

1985 (1)

F. Kajzar and J. Messier, “Third-harmonic generation in liquids,” Phys. Rev. A 32, 2352–2363 (1985).
[CrossRef] [PubMed]

Bourdin, J. P.

B. Sahraoui, M. Sylla, J. P. Bourdin, G. Rivoire, J. Zaremba, T. T. Nguyen, and M. Sallé, “Third-order nonlinear optical properties of ethylenic tetrathiafulvalene derivatives,” J. Mod. Opt. 42, 2095–2107 (1995).
[CrossRef]

J. P. Bourdin, P. X. Nguyen, G. Rivoire, and J. M. Nunzi, “Polarisation properties of the orientational response in phase conjugation,” Nonlinear Opt. 7, 1–6 (1994).

Chevalier, R.

B. Sahraoui, R. Chevalier, G. Rivoire, and J. Zaremba, “Nonlinear optical properties of new hypertetrathiafulvalene derivatives: saturable absorption and degenerate four wave mixing,” Opt. Commun. 135, 109–115 (1997).
[CrossRef]

B. Sahraoui, R. Chevalier, and G. Rivoire, “The influence of the concentration and the sample thickness of ethylenic tetrathiafulvalene derivatives on efficiency in degenerate four wave mixing,” Adv. Mater. Opt. Electron. 6, 343–347 (1996).
[CrossRef]

M. Sylla, J. Zaremba, R. Chevalier, G. Rivoire, A. Khanous, and A. Gorgues, “Third-order nonlinear optical susceptibility of acetylenic analogues of tetrathiafulvalene,” Synth. Met. 59, 111–121 (1993).
[CrossRef]

Gorgues, A.

M. Sylla, J. Zaremba, R. Chevalier, G. Rivoire, A. Khanous, and A. Gorgues, “Third-order nonlinear optical susceptibility of acetylenic analogues of tetrathiafulvalene,” Synth. Met. 59, 111–121 (1993).
[CrossRef]

Kajzar, F.

F. Kajzar and J. Messier, “Third-harmonic generation in liquids,” Phys. Rev. A 32, 2352–2363 (1985).
[CrossRef] [PubMed]

Kazjar, F.

F. Kazjar, J. Messier, and C. Rosilio, “Nonlinear optical properties of thin films of polysilane,” J. Appl. Phys. 60, 3040–3044 (1986).
[CrossRef]

Khanous, A.

M. Sylla, J. Zaremba, R. Chevalier, G. Rivoire, A. Khanous, and A. Gorgues, “Third-order nonlinear optical susceptibility of acetylenic analogues of tetrathiafulvalene,” Synth. Met. 59, 111–121 (1993).
[CrossRef]

Messier, J.

F. Kazjar, J. Messier, and C. Rosilio, “Nonlinear optical properties of thin films of polysilane,” J. Appl. Phys. 60, 3040–3044 (1986).
[CrossRef]

F. Kajzar and J. Messier, “Third-harmonic generation in liquids,” Phys. Rev. A 32, 2352–2363 (1985).
[CrossRef] [PubMed]

Nguyen, P. X.

J. P. Bourdin, P. X. Nguyen, G. Rivoire, and J. M. Nunzi, “Polarisation properties of the orientational response in phase conjugation,” Nonlinear Opt. 7, 1–6 (1994).

Nguyen, T. T.

B. Sahraoui, M. Sylla, J. P. Bourdin, G. Rivoire, J. Zaremba, T. T. Nguyen, and M. Sallé, “Third-order nonlinear optical properties of ethylenic tetrathiafulvalene derivatives,” J. Mod. Opt. 42, 2095–2107 (1995).
[CrossRef]

Nunzi, J. M.

J. P. Bourdin, P. X. Nguyen, G. Rivoire, and J. M. Nunzi, “Polarisation properties of the orientational response in phase conjugation,” Nonlinear Opt. 7, 1–6 (1994).

Rivoire, G.

B. Sahraoui, R. Chevalier, G. Rivoire, and J. Zaremba, “Nonlinear optical properties of new hypertetrathiafulvalene derivatives: saturable absorption and degenerate four wave mixing,” Opt. Commun. 135, 109–115 (1997).
[CrossRef]

B. Sahraoui, R. Chevalier, and G. Rivoire, “The influence of the concentration and the sample thickness of ethylenic tetrathiafulvalene derivatives on efficiency in degenerate four wave mixing,” Adv. Mater. Opt. Electron. 6, 343–347 (1996).
[CrossRef]

B. Sahraoui, M. Sylla, J. P. Bourdin, G. Rivoire, J. Zaremba, T. T. Nguyen, and M. Sallé, “Third-order nonlinear optical properties of ethylenic tetrathiafulvalene derivatives,” J. Mod. Opt. 42, 2095–2107 (1995).
[CrossRef]

J. P. Bourdin, P. X. Nguyen, G. Rivoire, and J. M. Nunzi, “Polarisation properties of the orientational response in phase conjugation,” Nonlinear Opt. 7, 1–6 (1994).

M. Sylla, J. Zaremba, R. Chevalier, G. Rivoire, A. Khanous, and A. Gorgues, “Third-order nonlinear optical susceptibility of acetylenic analogues of tetrathiafulvalene,” Synth. Met. 59, 111–121 (1993).
[CrossRef]

Rosilio, C.

F. Kazjar, J. Messier, and C. Rosilio, “Nonlinear optical properties of thin films of polysilane,” J. Appl. Phys. 60, 3040–3044 (1986).
[CrossRef]

Sahraoui, B.

B. Sahraoui, R. Chevalier, G. Rivoire, and J. Zaremba, “Nonlinear optical properties of new hypertetrathiafulvalene derivatives: saturable absorption and degenerate four wave mixing,” Opt. Commun. 135, 109–115 (1997).
[CrossRef]

B. Sahraoui, R. Chevalier, and G. Rivoire, “The influence of the concentration and the sample thickness of ethylenic tetrathiafulvalene derivatives on efficiency in degenerate four wave mixing,” Adv. Mater. Opt. Electron. 6, 343–347 (1996).
[CrossRef]

B. Sahraoui, M. Sylla, J. P. Bourdin, G. Rivoire, J. Zaremba, T. T. Nguyen, and M. Sallé, “Third-order nonlinear optical properties of ethylenic tetrathiafulvalene derivatives,” J. Mod. Opt. 42, 2095–2107 (1995).
[CrossRef]

Sallé, M.

B. Sahraoui, M. Sylla, J. P. Bourdin, G. Rivoire, J. Zaremba, T. T. Nguyen, and M. Sallé, “Third-order nonlinear optical properties of ethylenic tetrathiafulvalene derivatives,” J. Mod. Opt. 42, 2095–2107 (1995).
[CrossRef]

Sylla, M.

B. Sahraoui, M. Sylla, J. P. Bourdin, G. Rivoire, J. Zaremba, T. T. Nguyen, and M. Sallé, “Third-order nonlinear optical properties of ethylenic tetrathiafulvalene derivatives,” J. Mod. Opt. 42, 2095–2107 (1995).
[CrossRef]

M. Sylla, J. Zaremba, R. Chevalier, G. Rivoire, A. Khanous, and A. Gorgues, “Third-order nonlinear optical susceptibility of acetylenic analogues of tetrathiafulvalene,” Synth. Met. 59, 111–121 (1993).
[CrossRef]

Zaremba, J.

B. Sahraoui, R. Chevalier, G. Rivoire, and J. Zaremba, “Nonlinear optical properties of new hypertetrathiafulvalene derivatives: saturable absorption and degenerate four wave mixing,” Opt. Commun. 135, 109–115 (1997).
[CrossRef]

B. Sahraoui, M. Sylla, J. P. Bourdin, G. Rivoire, J. Zaremba, T. T. Nguyen, and M. Sallé, “Third-order nonlinear optical properties of ethylenic tetrathiafulvalene derivatives,” J. Mod. Opt. 42, 2095–2107 (1995).
[CrossRef]

M. Sylla, J. Zaremba, R. Chevalier, G. Rivoire, A. Khanous, and A. Gorgues, “Third-order nonlinear optical susceptibility of acetylenic analogues of tetrathiafulvalene,” Synth. Met. 59, 111–121 (1993).
[CrossRef]

Adv. Mater. Opt. Electron. (1)

B. Sahraoui, R. Chevalier, and G. Rivoire, “The influence of the concentration and the sample thickness of ethylenic tetrathiafulvalene derivatives on efficiency in degenerate four wave mixing,” Adv. Mater. Opt. Electron. 6, 343–347 (1996).
[CrossRef]

J. Appl. Phys. (1)

F. Kazjar, J. Messier, and C. Rosilio, “Nonlinear optical properties of thin films of polysilane,” J. Appl. Phys. 60, 3040–3044 (1986).
[CrossRef]

J. Mod. Opt. (1)

B. Sahraoui, M. Sylla, J. P. Bourdin, G. Rivoire, J. Zaremba, T. T. Nguyen, and M. Sallé, “Third-order nonlinear optical properties of ethylenic tetrathiafulvalene derivatives,” J. Mod. Opt. 42, 2095–2107 (1995).
[CrossRef]

Nonlinear Opt. (1)

J. P. Bourdin, P. X. Nguyen, G. Rivoire, and J. M. Nunzi, “Polarisation properties of the orientational response in phase conjugation,” Nonlinear Opt. 7, 1–6 (1994).

Opt. Commun. (1)

B. Sahraoui, R. Chevalier, G. Rivoire, and J. Zaremba, “Nonlinear optical properties of new hypertetrathiafulvalene derivatives: saturable absorption and degenerate four wave mixing,” Opt. Commun. 135, 109–115 (1997).
[CrossRef]

Phys. Rev. A (1)

F. Kajzar and J. Messier, “Third-harmonic generation in liquids,” Phys. Rev. A 32, 2352–2363 (1985).
[CrossRef] [PubMed]

Synth. Met. (1)

M. Sylla, J. Zaremba, R. Chevalier, G. Rivoire, A. Khanous, and A. Gorgues, “Third-order nonlinear optical susceptibility of acetylenic analogues of tetrathiafulvalene,” Synth. Met. 59, 111–121 (1993).
[CrossRef]

Other (4)

J. Zyss, ed., Molecular Nonlinear Optics: Materials, Physics and Devices (Academic, Boston, Mass., 1994).

G. I. Stegeman and A. Miller, Background and Components, Vol. 1 of Photonics in Switching, E. Midwinter, ed. (Academic, Boston, Mass., 1993).

J. Zyss and D. S. Chemla, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Orlando, Fla., 1987).

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. 〈1〉, 〈2〉, pump beams; 〈3〉, probe beam; 〈4〉, fourth beam or signal; Ft, neutral filter; R1–R3, delay lines; G’s, Glan prisms; Vc, Vt1, control photodiodes, PM, photomultiplier tube; BS’s, beam splitters.

Fig. 2
Fig. 2

Evolution of signal I4 versus concentration for molecule b1; I1=0.7 GW/cm2, Copt=0.08 g/L.

Fig. 3
Fig. 3

Reflectivity of DFWM versus the intensity of wave pumps 〈1〉 for the compound b1; Copt=0.08 g/L. The polarization state of incident waves 〈1〉, 〈2〉, and 〈3〉 is vertical (xxx), and the continuous curve corresponds to theoretical equation (1).

Tables (4)

Tables Icon

Table 1 Chemical Structures and Spectra of Bisdithiafulvenyl TTF Derivatives

Tables Icon

Table 2 Optimal Concentration Copt, Transmission T, and Linear Absorption Coefficient α at Copt

Tables Icon

Table 3 χ3 Components Deduced from DFWM for Bisdithiafulvenyl TTF Derivatives Studied at Optimum Concentration

Tables Icon

Table 4 Measured Values of Third-Order Susceptibility, χxxxx, Values of Second-Order Hyperpolarizability γ, and Their Electronic Contributions χxxxxel and γxxxxel

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R=I4(0)I3(0)={p2+α24{p[cot(pl)]+α2}2,p20p2+α24{q[coth(ql)]+α2}2,p2<0,
p2=48π3n2cλ χ32I1(0)2 exp(-αl)-α24,q=ip.
χxxxxexp2.8χxyxyexp2.8χxxyyexp3.5xyyxexp.
χijkl3=χijkl3el+χijkl3nu.
χxxxx3el=3χxxyy3el=3χyxyx3el=3χyxxy3el,
χxxxx3nu=8χxxyy3nu=8χyxyx3nu=43 χyxxy3nu.
χxxxxel1.1χxxxxexp,
χxxxxnu-0.1χxxxxexp.
χ3=F4Nγsolution+χsolvent3,

Metrics