Abstract

A new approach to polythiophene thin films with variable low-energy bandgap is reported. Stille reaction [Angew. Chem. Int. Ed. Engl. 25, 508 (1986)] between a toolbox of different bis(trimethyltin)thiophenes and dihalothieno[3,4-b]pyrazines produces polythiophenes with interesting nonlinear optical properties. By variation of the substituent attached to the pyrazine ring, the electronic and optical properties of the polymer can be strongly influenced, for example, in lowering the bandgap (<1 eV) or in increasing the oscillator strength. The improved oscillator strength is accompanied by a longer conjugation length and leads to higher nonlinearities. Third-order susceptibilities, χ(3), of 10-8 esu were achieved with figures of merit, χ(3)/α (where α is the linear absorption coefficient), of as much as 2×10-13 esu cm. Frequency-tunable degenerate four-wave mixing experiments revealed a strong wavelength dispersion of the figure of merit above the bandgap, in contrast to scaling laws empirically found by other groups.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  2. W. Schrof, J. R. Wuensch, A. Esser, K. H. Haas, and H. Naarmann, “Nonlinear optics of conjugated polyacetylene thin films produced by different preparation techniques,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. 10, 69–78 (1995).
  3. J. Roncali, “Conjugate poly(thiohenes): synthesis, functionalization and applications,” Chem. Rev. 92, 711–738 (1992).
    [CrossRef]
  4. H. Möhwald, V. Belov, and W. Schrof, “New heterocyclic thiophene-based conjugated polymers for third order non-linear optics,” Polym. Prepr. Jpn 45, 79–82 (1996).
  5. W. Schrof, H. Möhwald, V. Belov, E. Mayer, and E. Van Keuren, “Substituierte Polythiophene als Materialien mit nichtlinear optischen Eigenschaften,” German patent DE-P 196 08 700.7 (6 March 1996).
  6. J. K. Stille, “The palladium-catalyzed cross-coupling reactions of organotin reagents with organic electrophiles,” Angew. Chem. Int. Ed. Engl. 25, 508–524 (1986).
    [CrossRef]
  7. Z. Bao, W. Chan, and L. Yu, “Exploration of the Stille coupling reaction for the synthesis of functional polymers,” J. Am. Chem. Soc. 117, 12426–12435 (1995).
    [CrossRef]
  8. C. Kitamura, S. Tanaka, and Y. Yamashita, “Design of narrow bandgap polymers. Syntheses and properties of monomers and polymers containing aromatic donor and o-quinoid acceptor units,” Chem. Mater. 8, 570–578 (1996).
    [CrossRef]
  9. M. Del Zoppo, C. Castiglioni, P. Zuliani, and G. Zerbi, “NLO responses of organic materials: the vibrational approach,” Adv. Mater. 8, 345–347 (1996).
    [CrossRef]
  10. C. C. Bubeck, A. Kaltbeitzel, A. Grund, and M. Le Clerc, “Resonant degenerate four wave mixing and scaling laws for saturable absorption in thin films of conjugated polymers and Rhodamine 6G AU,” Chem. Phys. 154, 343–348 (1991).
    [CrossRef]
  11. V. A. Shakin, S. Abe, and T. Kobayashi, “Nonlinear optical susceptibilities of conjugated polymers: damping, resonance and scaling laws,” Phys. Rev. B 53, 10656–10666 (1996).
    [CrossRef]

1996 (3)

C. Kitamura, S. Tanaka, and Y. Yamashita, “Design of narrow bandgap polymers. Syntheses and properties of monomers and polymers containing aromatic donor and o-quinoid acceptor units,” Chem. Mater. 8, 570–578 (1996).
[CrossRef]

M. Del Zoppo, C. Castiglioni, P. Zuliani, and G. Zerbi, “NLO responses of organic materials: the vibrational approach,” Adv. Mater. 8, 345–347 (1996).
[CrossRef]

V. A. Shakin, S. Abe, and T. Kobayashi, “Nonlinear optical susceptibilities of conjugated polymers: damping, resonance and scaling laws,” Phys. Rev. B 53, 10656–10666 (1996).
[CrossRef]

1995 (2)

Z. Bao, W. Chan, and L. Yu, “Exploration of the Stille coupling reaction for the synthesis of functional polymers,” J. Am. Chem. Soc. 117, 12426–12435 (1995).
[CrossRef]

W. Schrof, J. R. Wuensch, A. Esser, K. H. Haas, and H. Naarmann, “Nonlinear optics of conjugated polyacetylene thin films produced by different preparation techniques,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. 10, 69–78 (1995).

1992 (1)

J. Roncali, “Conjugate poly(thiohenes): synthesis, functionalization and applications,” Chem. Rev. 92, 711–738 (1992).
[CrossRef]

1991 (1)

C. C. Bubeck, A. Kaltbeitzel, A. Grund, and M. Le Clerc, “Resonant degenerate four wave mixing and scaling laws for saturable absorption in thin films of conjugated polymers and Rhodamine 6G AU,” Chem. Phys. 154, 343–348 (1991).
[CrossRef]

1986 (1)

J. K. Stille, “The palladium-catalyzed cross-coupling reactions of organotin reagents with organic electrophiles,” Angew. Chem. Int. Ed. Engl. 25, 508–524 (1986).
[CrossRef]

Abe, S.

V. A. Shakin, S. Abe, and T. Kobayashi, “Nonlinear optical susceptibilities of conjugated polymers: damping, resonance and scaling laws,” Phys. Rev. B 53, 10656–10666 (1996).
[CrossRef]

Bao, Z.

Z. Bao, W. Chan, and L. Yu, “Exploration of the Stille coupling reaction for the synthesis of functional polymers,” J. Am. Chem. Soc. 117, 12426–12435 (1995).
[CrossRef]

Bubeck, C. C.

C. C. Bubeck, A. Kaltbeitzel, A. Grund, and M. Le Clerc, “Resonant degenerate four wave mixing and scaling laws for saturable absorption in thin films of conjugated polymers and Rhodamine 6G AU,” Chem. Phys. 154, 343–348 (1991).
[CrossRef]

Castiglioni, C.

M. Del Zoppo, C. Castiglioni, P. Zuliani, and G. Zerbi, “NLO responses of organic materials: the vibrational approach,” Adv. Mater. 8, 345–347 (1996).
[CrossRef]

Chan, W.

Z. Bao, W. Chan, and L. Yu, “Exploration of the Stille coupling reaction for the synthesis of functional polymers,” J. Am. Chem. Soc. 117, 12426–12435 (1995).
[CrossRef]

Del Zoppo, M.

M. Del Zoppo, C. Castiglioni, P. Zuliani, and G. Zerbi, “NLO responses of organic materials: the vibrational approach,” Adv. Mater. 8, 345–347 (1996).
[CrossRef]

Esser, A.

W. Schrof, J. R. Wuensch, A. Esser, K. H. Haas, and H. Naarmann, “Nonlinear optics of conjugated polyacetylene thin films produced by different preparation techniques,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. 10, 69–78 (1995).

Grund, A.

C. C. Bubeck, A. Kaltbeitzel, A. Grund, and M. Le Clerc, “Resonant degenerate four wave mixing and scaling laws for saturable absorption in thin films of conjugated polymers and Rhodamine 6G AU,” Chem. Phys. 154, 343–348 (1991).
[CrossRef]

Haas, K. H.

W. Schrof, J. R. Wuensch, A. Esser, K. H. Haas, and H. Naarmann, “Nonlinear optics of conjugated polyacetylene thin films produced by different preparation techniques,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. 10, 69–78 (1995).

Kaltbeitzel, A.

C. C. Bubeck, A. Kaltbeitzel, A. Grund, and M. Le Clerc, “Resonant degenerate four wave mixing and scaling laws for saturable absorption in thin films of conjugated polymers and Rhodamine 6G AU,” Chem. Phys. 154, 343–348 (1991).
[CrossRef]

Kitamura, C.

C. Kitamura, S. Tanaka, and Y. Yamashita, “Design of narrow bandgap polymers. Syntheses and properties of monomers and polymers containing aromatic donor and o-quinoid acceptor units,” Chem. Mater. 8, 570–578 (1996).
[CrossRef]

Kobayashi, T.

V. A. Shakin, S. Abe, and T. Kobayashi, “Nonlinear optical susceptibilities of conjugated polymers: damping, resonance and scaling laws,” Phys. Rev. B 53, 10656–10666 (1996).
[CrossRef]

Le Clerc, M.

C. C. Bubeck, A. Kaltbeitzel, A. Grund, and M. Le Clerc, “Resonant degenerate four wave mixing and scaling laws for saturable absorption in thin films of conjugated polymers and Rhodamine 6G AU,” Chem. Phys. 154, 343–348 (1991).
[CrossRef]

Naarmann, H.

W. Schrof, J. R. Wuensch, A. Esser, K. H. Haas, and H. Naarmann, “Nonlinear optics of conjugated polyacetylene thin films produced by different preparation techniques,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. 10, 69–78 (1995).

Roncali, J.

J. Roncali, “Conjugate poly(thiohenes): synthesis, functionalization and applications,” Chem. Rev. 92, 711–738 (1992).
[CrossRef]

Schrof, W.

W. Schrof, J. R. Wuensch, A. Esser, K. H. Haas, and H. Naarmann, “Nonlinear optics of conjugated polyacetylene thin films produced by different preparation techniques,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. 10, 69–78 (1995).

Shakin, V. A.

V. A. Shakin, S. Abe, and T. Kobayashi, “Nonlinear optical susceptibilities of conjugated polymers: damping, resonance and scaling laws,” Phys. Rev. B 53, 10656–10666 (1996).
[CrossRef]

Stille, J. K.

J. K. Stille, “The palladium-catalyzed cross-coupling reactions of organotin reagents with organic electrophiles,” Angew. Chem. Int. Ed. Engl. 25, 508–524 (1986).
[CrossRef]

Tanaka, S.

C. Kitamura, S. Tanaka, and Y. Yamashita, “Design of narrow bandgap polymers. Syntheses and properties of monomers and polymers containing aromatic donor and o-quinoid acceptor units,” Chem. Mater. 8, 570–578 (1996).
[CrossRef]

Wuensch, J. R.

W. Schrof, J. R. Wuensch, A. Esser, K. H. Haas, and H. Naarmann, “Nonlinear optics of conjugated polyacetylene thin films produced by different preparation techniques,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. 10, 69–78 (1995).

Yamashita, Y.

C. Kitamura, S. Tanaka, and Y. Yamashita, “Design of narrow bandgap polymers. Syntheses and properties of monomers and polymers containing aromatic donor and o-quinoid acceptor units,” Chem. Mater. 8, 570–578 (1996).
[CrossRef]

Yu, L.

Z. Bao, W. Chan, and L. Yu, “Exploration of the Stille coupling reaction for the synthesis of functional polymers,” J. Am. Chem. Soc. 117, 12426–12435 (1995).
[CrossRef]

Zerbi, G.

M. Del Zoppo, C. Castiglioni, P. Zuliani, and G. Zerbi, “NLO responses of organic materials: the vibrational approach,” Adv. Mater. 8, 345–347 (1996).
[CrossRef]

Zuliani, P.

M. Del Zoppo, C. Castiglioni, P. Zuliani, and G. Zerbi, “NLO responses of organic materials: the vibrational approach,” Adv. Mater. 8, 345–347 (1996).
[CrossRef]

Adv. Mater. (1)

M. Del Zoppo, C. Castiglioni, P. Zuliani, and G. Zerbi, “NLO responses of organic materials: the vibrational approach,” Adv. Mater. 8, 345–347 (1996).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

J. K. Stille, “The palladium-catalyzed cross-coupling reactions of organotin reagents with organic electrophiles,” Angew. Chem. Int. Ed. Engl. 25, 508–524 (1986).
[CrossRef]

Chem. Mater. (1)

C. Kitamura, S. Tanaka, and Y. Yamashita, “Design of narrow bandgap polymers. Syntheses and properties of monomers and polymers containing aromatic donor and o-quinoid acceptor units,” Chem. Mater. 8, 570–578 (1996).
[CrossRef]

Chem. Phys. (1)

C. C. Bubeck, A. Kaltbeitzel, A. Grund, and M. Le Clerc, “Resonant degenerate four wave mixing and scaling laws for saturable absorption in thin films of conjugated polymers and Rhodamine 6G AU,” Chem. Phys. 154, 343–348 (1991).
[CrossRef]

Chem. Rev. (1)

J. Roncali, “Conjugate poly(thiohenes): synthesis, functionalization and applications,” Chem. Rev. 92, 711–738 (1992).
[CrossRef]

J. Am. Chem. Soc. (1)

Z. Bao, W. Chan, and L. Yu, “Exploration of the Stille coupling reaction for the synthesis of functional polymers,” J. Am. Chem. Soc. 117, 12426–12435 (1995).
[CrossRef]

Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. (1)

W. Schrof, J. R. Wuensch, A. Esser, K. H. Haas, and H. Naarmann, “Nonlinear optics of conjugated polyacetylene thin films produced by different preparation techniques,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. 10, 69–78 (1995).

Phys. Rev. B (1)

V. A. Shakin, S. Abe, and T. Kobayashi, “Nonlinear optical susceptibilities of conjugated polymers: damping, resonance and scaling laws,” Phys. Rev. B 53, 10656–10666 (1996).
[CrossRef]

Other (3)

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

H. Möhwald, V. Belov, and W. Schrof, “New heterocyclic thiophene-based conjugated polymers for third order non-linear optics,” Polym. Prepr. Jpn 45, 79–82 (1996).

W. Schrof, H. Möhwald, V. Belov, E. Mayer, and E. Van Keuren, “Substituierte Polythiophene als Materialien mit nichtlinear optischen Eigenschaften,” German patent DE-P 196 08 700.7 (6 March 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Stille coupling for synthesis of polythiophenes.

Fig. 2
Fig. 2

Monomers used for synthesizing polythiophene derivatives.

Fig. 3
Fig. 3

Structural formula of the polythiophenes investigated.

Fig. 4
Fig. 4

Optical layout of the DFWM experiment (PD, photodiode; OPA, optical parametric amplifier).

Fig. 5
Fig. 5

Absorption spectra of the polythiophene films 366-79 and 366-80.

Fig. 6
Fig. 6

Absorption spectra of the polythiophene films 366-150, 366-172, and 366-189.

Fig. 7
Fig. 7

Absorption spectra of the polythiophene films 366-143, 366-144, and 366-146.

Fig. 8
Fig. 8

Raman spectra of polythiophene films 366-80, 366-150, 366-172, and 366-189. The intensities are normalized to the same maximum height.

Fig. 9
Fig. 9

DFWM signal of polythiophene film 366-172 (wavelength, 800 nm): thickness, 395 nm; χ(3) value, 4.5×10-9esu; relaxation times, 180 fs, 1.6 ps.

Fig. 10
Fig. 10

Wavelength dispersion of χ(3) value (squares) and absorption constant α (solid curve) for polythiophene film 366-189.

Fig. 11
Fig. 11

Wavelength dispersion of χ(3)/α value (triangles) and absorption constant α (solid curve) for polythiophene film 366-189.  

Fig. 12
Fig. 12

NLO map of the polythiophene samples investigated. The figure of merit is plotted as a function of the χ(3) nonlinearity.

Tables (1)

Tables Icon

Table 1 Linear and Nonlinear Optical Properties of Substituted Polythiophenes

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

χs(3)=χref(3)ns2nref2 I4sI4ref Pref3Ps3×α exp(αLeffs/2)[1-exp(-αLeffs)] Leffref,

Metrics