Abstract

The second hyperpolarizabilities of three heterocyclic molecules of C4H4X, where X=O (furan), S (thiophene), or Se (selenophene), were investigated by an optical-heterodyne-detected optical-Kerr-effect experiment and an ab initio Hartree–Fock molecular orbital calculation with largely augmented basis sets. From the observed third-order responses the electronic hyperpolarizabilities were determined after the nuclear nonlinear optical responses were removed by Fourier-transform analysis. Results of both experiment and calculation exhibited 2 times enhancement when the heteroatom of O was replaced by Se. The origin of the enhancement and the contribution of the heteroatom to the hyperpolarizability are discussed. Also, a direct comparison of the experimental values with calculated ones is made.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  2. J.-L. Brédas, C. Adant, P. C. E. Tackx, A. Persoons, and B. M. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
    [CrossRef]
  3. M.-T. Zhao, B. P. Singh, and P. N. Prasad, “A systematic study of polarizability and microscopic third-order optical nonlinearity in thiophene oligomers,” J. Chem. Phys. 89, 5535–5541 (1988).
    [CrossRef]
  4. H. Okawa, T. Wada, A. Yamada, and H. Sasabe, “Third-order optical nonlinearity of soluble polythiophenes,” Mater. Res. Soc. Symp. Proc. 214, 23–28 (1991).
    [CrossRef]
  5. K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996).
    [CrossRef]
  6. D. McMorrow, “Separation of nuclear and electronic contributions to femtosecond four-wave mixing data,” Opt. Commun. 86, 236–244 (1991).
    [CrossRef]
  7. D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
    [CrossRef]
  8. Y. J. Chang and E. W. Castner, Jr., “Fast responses from slowly relaxing liquids: a comparative study of the femtosecond dynamics of triacetin, ethylene glycol, and water,” J. Chem. Phys. 99, 7289–7299 (1993).
    [CrossRef]
  9. H. P. Deuel, P. Cong, and J. D. Simon, “Probing intermolecular dynamics in liquids by femtosecond optical Kerr effect spectroscopy: effects of molecular symmetry,” J. Phys. Chem. 98, 12, 600–12, 608 (1994).
    [CrossRef]
  10. S. Kinoshita, Y. Kai, M. Yamaguchi, and T. Yagi, “Direct comparison of femtosecond Fourier-transform Raman spectrum with spontaneous light scattering spectrum,” Chem. Phys. Lett. 236, 259–264 (1995).
    [CrossRef]
  11. F. W. Deeg, J. J. Stankus, S. R. Greenfiled, V. J. Newell, and M. D. Fayer, “Anisotropic reorientational relaxation of biphenyl: transient grating optical Kerr effect measurements,” J. Chem. Phys. 90, 6893–6902 (1989).
    [CrossRef]
  12. G. L. Eesley, M. D. Levenson, and W. M. Tolles, “Optically heterodyned coherent Raman spectroscopy,” IEEE J. Quantum Electron. QE-14, 45–49 (1978).
    [CrossRef]
  13. K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr study of heavy atom effects on the third-order nonlinearity of thiophene homologues: purely electronic contribution,” Chem. Phys. Lett. 263, 215–222 (1996).
    [CrossRef]
  14. D. McMorrow and W. T. Lotshaw, “The frequency response of condensed-phase media to femtosecond optical pulses: spectral-filter effects,” J. Chem. Phys. 174, 85–94 (1990).
  15. K. Sala and M. C. Richardson, “Optical Kerr effect induced by ultrafast laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
    [CrossRef]
  16. B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63, 2666–2682 (1975).
    [CrossRef]
  17. A. Mito, K. Hagimoto, and C. Takahashi, “Determination of the third-order optical nonlinear susceptibility of fused silica using optical harmonic generation,” Nonlinear Opt. 13, 3–18 (1995).
  18. M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Jhonson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, GAUSSIAN 92 Software program (Gaussian, Inc., Pittsburgh, Pa., 1992).
  19. K. Ohta, T. Fukumi, and T. Sakaguchi, “Basis set dependence of polarizability and hyperpolarizability of some organic molecules in ab initio molecular orbital calculations,” Nonlinear Opt. 6, 215–227 (1994).
  20. K. Ohta, T. Sakaguchi, K. Kamada, and T. Fukumi, “Ab initio molecular orbital calculation of the second hyperpolarizability of the carbon disulfide molecule: electron correlation and frequency dispersion,” Chem. Phys. Lett. 274, 306–314 (1997).
    [CrossRef]
  21. W. R. Wadt and P. J. Hay, “Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi,” J. Chem. Phys. 82, 284–298 (1985).
    [CrossRef]
  22. V. Keshari, W. M. K. P. Wijekoon, P. N. Prasad, and S. P. Karna, “Hyperpolarizabilities of organic molecules: ab initio time-dependent coupled perturbed Hartree–Fock–Roothaan studies of basic heterocyclic structures,” J. Phys. Chem. 99, 9045–9050 (1995).
    [CrossRef]
  23. E. Perrin, P. N. Prasad, P. Mougenot, and M. Dupuis, “Ab initio calculations of polarizability and second hyperpolarizability in benzene including electron correlation treated by Møller–Plesset theory,” J. Chem. Phys. 91, 4728–4732 (1989).
    [CrossRef]
  24. F. Sim, S. Chin, M. Dupuis, and J. E. Rice, “Electron correlation effects in hyperpolarizabilities of p-nitroaniline,” J. Phys. Chem. 97, 1158–1163 (1993).
    [CrossRef]
  25. D. M. Bishop, “Molecular vibrational and rotational motion in static and dynamic electric fields,” Rev. Mod. Phys. 62, 343–374 (1990).
    [CrossRef]
  26. B. Champagne, “Vibrational polarizability and hyperpolarizability of p-nitroaniline,” Chem. Phys. Lett. 261, 57–65 (1996).
    [CrossRef]
  27. G. Varsányi, L. Nyulśzi, T. Veszprémi, and T. Narisawa, “Vibronic analysis and symmetry of the lowest energy ultraviolet transition of thiophene,” J. Chem. Soc. Perkin Trans. 2, 761–765 (1982).
  28. M. Kuzyk, “All-optical materials and devices,” in Organic Thin Films for Waveguiding Nonlinear Optics, F. Kajzar and J. D. Swalen, eds. (Gordon & Breach, Philadelphia, Pa., 1996), pp. 759–820.
  29. F. Fringuelli, G. Marino, and A. Taticchi, “Tellurophene and related compounds,” Adv. Heterocycl. Chem. 21, 119–173 (1977).

1997 (1)

K. Ohta, T. Sakaguchi, K. Kamada, and T. Fukumi, “Ab initio molecular orbital calculation of the second hyperpolarizability of the carbon disulfide molecule: electron correlation and frequency dispersion,” Chem. Phys. Lett. 274, 306–314 (1997).
[CrossRef]

1996 (3)

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr study of heavy atom effects on the third-order nonlinearity of thiophene homologues: purely electronic contribution,” Chem. Phys. Lett. 263, 215–222 (1996).
[CrossRef]

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996).
[CrossRef]

B. Champagne, “Vibrational polarizability and hyperpolarizability of p-nitroaniline,” Chem. Phys. Lett. 261, 57–65 (1996).
[CrossRef]

1995 (3)

V. Keshari, W. M. K. P. Wijekoon, P. N. Prasad, and S. P. Karna, “Hyperpolarizabilities of organic molecules: ab initio time-dependent coupled perturbed Hartree–Fock–Roothaan studies of basic heterocyclic structures,” J. Phys. Chem. 99, 9045–9050 (1995).
[CrossRef]

S. Kinoshita, Y. Kai, M. Yamaguchi, and T. Yagi, “Direct comparison of femtosecond Fourier-transform Raman spectrum with spontaneous light scattering spectrum,” Chem. Phys. Lett. 236, 259–264 (1995).
[CrossRef]

A. Mito, K. Hagimoto, and C. Takahashi, “Determination of the third-order optical nonlinear susceptibility of fused silica using optical harmonic generation,” Nonlinear Opt. 13, 3–18 (1995).

1994 (3)

K. Ohta, T. Fukumi, and T. Sakaguchi, “Basis set dependence of polarizability and hyperpolarizability of some organic molecules in ab initio molecular orbital calculations,” Nonlinear Opt. 6, 215–227 (1994).

J.-L. Brédas, C. Adant, P. C. E. Tackx, A. Persoons, and B. M. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

H. P. Deuel, P. Cong, and J. D. Simon, “Probing intermolecular dynamics in liquids by femtosecond optical Kerr effect spectroscopy: effects of molecular symmetry,” J. Phys. Chem. 98, 12, 600–12, 608 (1994).
[CrossRef]

1993 (2)

F. Sim, S. Chin, M. Dupuis, and J. E. Rice, “Electron correlation effects in hyperpolarizabilities of p-nitroaniline,” J. Phys. Chem. 97, 1158–1163 (1993).
[CrossRef]

Y. J. Chang and E. W. Castner, Jr., “Fast responses from slowly relaxing liquids: a comparative study of the femtosecond dynamics of triacetin, ethylene glycol, and water,” J. Chem. Phys. 99, 7289–7299 (1993).
[CrossRef]

1991 (2)

H. Okawa, T. Wada, A. Yamada, and H. Sasabe, “Third-order optical nonlinearity of soluble polythiophenes,” Mater. Res. Soc. Symp. Proc. 214, 23–28 (1991).
[CrossRef]

D. McMorrow, “Separation of nuclear and electronic contributions to femtosecond four-wave mixing data,” Opt. Commun. 86, 236–244 (1991).
[CrossRef]

1990 (2)

D. McMorrow and W. T. Lotshaw, “The frequency response of condensed-phase media to femtosecond optical pulses: spectral-filter effects,” J. Chem. Phys. 174, 85–94 (1990).

D. M. Bishop, “Molecular vibrational and rotational motion in static and dynamic electric fields,” Rev. Mod. Phys. 62, 343–374 (1990).
[CrossRef]

1989 (2)

E. Perrin, P. N. Prasad, P. Mougenot, and M. Dupuis, “Ab initio calculations of polarizability and second hyperpolarizability in benzene including electron correlation treated by Møller–Plesset theory,” J. Chem. Phys. 91, 4728–4732 (1989).
[CrossRef]

F. W. Deeg, J. J. Stankus, S. R. Greenfiled, V. J. Newell, and M. D. Fayer, “Anisotropic reorientational relaxation of biphenyl: transient grating optical Kerr effect measurements,” J. Chem. Phys. 90, 6893–6902 (1989).
[CrossRef]

1988 (2)

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

M.-T. Zhao, B. P. Singh, and P. N. Prasad, “A systematic study of polarizability and microscopic third-order optical nonlinearity in thiophene oligomers,” J. Chem. Phys. 89, 5535–5541 (1988).
[CrossRef]

1985 (1)

W. R. Wadt and P. J. Hay, “Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi,” J. Chem. Phys. 82, 284–298 (1985).
[CrossRef]

1978 (1)

G. L. Eesley, M. D. Levenson, and W. M. Tolles, “Optically heterodyned coherent Raman spectroscopy,” IEEE J. Quantum Electron. QE-14, 45–49 (1978).
[CrossRef]

1975 (2)

K. Sala and M. C. Richardson, “Optical Kerr effect induced by ultrafast laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
[CrossRef]

B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63, 2666–2682 (1975).
[CrossRef]

Adant, C.

J.-L. Brédas, C. Adant, P. C. E. Tackx, A. Persoons, and B. M. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

Bethea, C. G.

B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63, 2666–2682 (1975).
[CrossRef]

Bishop, D. M.

D. M. Bishop, “Molecular vibrational and rotational motion in static and dynamic electric fields,” Rev. Mod. Phys. 62, 343–374 (1990).
[CrossRef]

Brédas, J.-L.

J.-L. Brédas, C. Adant, P. C. E. Tackx, A. Persoons, and B. M. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

Castner Jr., E. W.

Y. J. Chang and E. W. Castner, Jr., “Fast responses from slowly relaxing liquids: a comparative study of the femtosecond dynamics of triacetin, ethylene glycol, and water,” J. Chem. Phys. 99, 7289–7299 (1993).
[CrossRef]

Champagne, B.

B. Champagne, “Vibrational polarizability and hyperpolarizability of p-nitroaniline,” Chem. Phys. Lett. 261, 57–65 (1996).
[CrossRef]

Chang, Y. J.

Y. J. Chang and E. W. Castner, Jr., “Fast responses from slowly relaxing liquids: a comparative study of the femtosecond dynamics of triacetin, ethylene glycol, and water,” J. Chem. Phys. 99, 7289–7299 (1993).
[CrossRef]

Chin, S.

F. Sim, S. Chin, M. Dupuis, and J. E. Rice, “Electron correlation effects in hyperpolarizabilities of p-nitroaniline,” J. Phys. Chem. 97, 1158–1163 (1993).
[CrossRef]

Cong, P.

H. P. Deuel, P. Cong, and J. D. Simon, “Probing intermolecular dynamics in liquids by femtosecond optical Kerr effect spectroscopy: effects of molecular symmetry,” J. Phys. Chem. 98, 12, 600–12, 608 (1994).
[CrossRef]

Deeg, F. W.

F. W. Deeg, J. J. Stankus, S. R. Greenfiled, V. J. Newell, and M. D. Fayer, “Anisotropic reorientational relaxation of biphenyl: transient grating optical Kerr effect measurements,” J. Chem. Phys. 90, 6893–6902 (1989).
[CrossRef]

Deuel, H. P.

H. P. Deuel, P. Cong, and J. D. Simon, “Probing intermolecular dynamics in liquids by femtosecond optical Kerr effect spectroscopy: effects of molecular symmetry,” J. Phys. Chem. 98, 12, 600–12, 608 (1994).
[CrossRef]

Dupuis, M.

F. Sim, S. Chin, M. Dupuis, and J. E. Rice, “Electron correlation effects in hyperpolarizabilities of p-nitroaniline,” J. Phys. Chem. 97, 1158–1163 (1993).
[CrossRef]

E. Perrin, P. N. Prasad, P. Mougenot, and M. Dupuis, “Ab initio calculations of polarizability and second hyperpolarizability in benzene including electron correlation treated by Møller–Plesset theory,” J. Chem. Phys. 91, 4728–4732 (1989).
[CrossRef]

Eesley, G. L.

G. L. Eesley, M. D. Levenson, and W. M. Tolles, “Optically heterodyned coherent Raman spectroscopy,” IEEE J. Quantum Electron. QE-14, 45–49 (1978).
[CrossRef]

Fayer, M. D.

F. W. Deeg, J. J. Stankus, S. R. Greenfiled, V. J. Newell, and M. D. Fayer, “Anisotropic reorientational relaxation of biphenyl: transient grating optical Kerr effect measurements,” J. Chem. Phys. 90, 6893–6902 (1989).
[CrossRef]

Fukumi, T.

K. Ohta, T. Sakaguchi, K. Kamada, and T. Fukumi, “Ab initio molecular orbital calculation of the second hyperpolarizability of the carbon disulfide molecule: electron correlation and frequency dispersion,” Chem. Phys. Lett. 274, 306–314 (1997).
[CrossRef]

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996).
[CrossRef]

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr study of heavy atom effects on the third-order nonlinearity of thiophene homologues: purely electronic contribution,” Chem. Phys. Lett. 263, 215–222 (1996).
[CrossRef]

K. Ohta, T. Fukumi, and T. Sakaguchi, “Basis set dependence of polarizability and hyperpolarizability of some organic molecules in ab initio molecular orbital calculations,” Nonlinear Opt. 6, 215–227 (1994).

Greenfiled, S. R.

F. W. Deeg, J. J. Stankus, S. R. Greenfiled, V. J. Newell, and M. D. Fayer, “Anisotropic reorientational relaxation of biphenyl: transient grating optical Kerr effect measurements,” J. Chem. Phys. 90, 6893–6902 (1989).
[CrossRef]

Hagimoto, K.

A. Mito, K. Hagimoto, and C. Takahashi, “Determination of the third-order optical nonlinear susceptibility of fused silica using optical harmonic generation,” Nonlinear Opt. 13, 3–18 (1995).

Hay, P. J.

W. R. Wadt and P. J. Hay, “Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi,” J. Chem. Phys. 82, 284–298 (1985).
[CrossRef]

Kai, Y.

S. Kinoshita, Y. Kai, M. Yamaguchi, and T. Yagi, “Direct comparison of femtosecond Fourier-transform Raman spectrum with spontaneous light scattering spectrum,” Chem. Phys. Lett. 236, 259–264 (1995).
[CrossRef]

Kamada, K.

K. Ohta, T. Sakaguchi, K. Kamada, and T. Fukumi, “Ab initio molecular orbital calculation of the second hyperpolarizability of the carbon disulfide molecule: electron correlation and frequency dispersion,” Chem. Phys. Lett. 274, 306–314 (1997).
[CrossRef]

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996).
[CrossRef]

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr study of heavy atom effects on the third-order nonlinearity of thiophene homologues: purely electronic contribution,” Chem. Phys. Lett. 263, 215–222 (1996).
[CrossRef]

Karna, S. P.

V. Keshari, W. M. K. P. Wijekoon, P. N. Prasad, and S. P. Karna, “Hyperpolarizabilities of organic molecules: ab initio time-dependent coupled perturbed Hartree–Fock–Roothaan studies of basic heterocyclic structures,” J. Phys. Chem. 99, 9045–9050 (1995).
[CrossRef]

Kenney-Wallace, G. A.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

Keshari, V.

V. Keshari, W. M. K. P. Wijekoon, P. N. Prasad, and S. P. Karna, “Hyperpolarizabilities of organic molecules: ab initio time-dependent coupled perturbed Hartree–Fock–Roothaan studies of basic heterocyclic structures,” J. Phys. Chem. 99, 9045–9050 (1995).
[CrossRef]

Kinoshita, S.

S. Kinoshita, Y. Kai, M. Yamaguchi, and T. Yagi, “Direct comparison of femtosecond Fourier-transform Raman spectrum with spontaneous light scattering spectrum,” Chem. Phys. Lett. 236, 259–264 (1995).
[CrossRef]

Levenson, M. D.

G. L. Eesley, M. D. Levenson, and W. M. Tolles, “Optically heterodyned coherent Raman spectroscopy,” IEEE J. Quantum Electron. QE-14, 45–49 (1978).
[CrossRef]

Levine, B. F.

B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63, 2666–2682 (1975).
[CrossRef]

Lotshaw, W. T.

D. McMorrow and W. T. Lotshaw, “The frequency response of condensed-phase media to femtosecond optical pulses: spectral-filter effects,” J. Chem. Phys. 174, 85–94 (1990).

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

McMorrow, D.

D. McMorrow, “Separation of nuclear and electronic contributions to femtosecond four-wave mixing data,” Opt. Commun. 86, 236–244 (1991).
[CrossRef]

D. McMorrow and W. T. Lotshaw, “The frequency response of condensed-phase media to femtosecond optical pulses: spectral-filter effects,” J. Chem. Phys. 174, 85–94 (1990).

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

Mito, A.

A. Mito, K. Hagimoto, and C. Takahashi, “Determination of the third-order optical nonlinear susceptibility of fused silica using optical harmonic generation,” Nonlinear Opt. 13, 3–18 (1995).

Mougenot, P.

E. Perrin, P. N. Prasad, P. Mougenot, and M. Dupuis, “Ab initio calculations of polarizability and second hyperpolarizability in benzene including electron correlation treated by Møller–Plesset theory,” J. Chem. Phys. 91, 4728–4732 (1989).
[CrossRef]

Newell, V. J.

F. W. Deeg, J. J. Stankus, S. R. Greenfiled, V. J. Newell, and M. D. Fayer, “Anisotropic reorientational relaxation of biphenyl: transient grating optical Kerr effect measurements,” J. Chem. Phys. 90, 6893–6902 (1989).
[CrossRef]

Ohta, K.

K. Ohta, T. Sakaguchi, K. Kamada, and T. Fukumi, “Ab initio molecular orbital calculation of the second hyperpolarizability of the carbon disulfide molecule: electron correlation and frequency dispersion,” Chem. Phys. Lett. 274, 306–314 (1997).
[CrossRef]

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996).
[CrossRef]

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr study of heavy atom effects on the third-order nonlinearity of thiophene homologues: purely electronic contribution,” Chem. Phys. Lett. 263, 215–222 (1996).
[CrossRef]

K. Ohta, T. Fukumi, and T. Sakaguchi, “Basis set dependence of polarizability and hyperpolarizability of some organic molecules in ab initio molecular orbital calculations,” Nonlinear Opt. 6, 215–227 (1994).

Okawa, H.

H. Okawa, T. Wada, A. Yamada, and H. Sasabe, “Third-order optical nonlinearity of soluble polythiophenes,” Mater. Res. Soc. Symp. Proc. 214, 23–28 (1991).
[CrossRef]

Perrin, E.

E. Perrin, P. N. Prasad, P. Mougenot, and M. Dupuis, “Ab initio calculations of polarizability and second hyperpolarizability in benzene including electron correlation treated by Møller–Plesset theory,” J. Chem. Phys. 91, 4728–4732 (1989).
[CrossRef]

Persoons, A.

J.-L. Brédas, C. Adant, P. C. E. Tackx, A. Persoons, and B. M. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

Pierce, B. M.

J.-L. Brédas, C. Adant, P. C. E. Tackx, A. Persoons, and B. M. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

Prasad, P. N.

V. Keshari, W. M. K. P. Wijekoon, P. N. Prasad, and S. P. Karna, “Hyperpolarizabilities of organic molecules: ab initio time-dependent coupled perturbed Hartree–Fock–Roothaan studies of basic heterocyclic structures,” J. Phys. Chem. 99, 9045–9050 (1995).
[CrossRef]

E. Perrin, P. N. Prasad, P. Mougenot, and M. Dupuis, “Ab initio calculations of polarizability and second hyperpolarizability in benzene including electron correlation treated by Møller–Plesset theory,” J. Chem. Phys. 91, 4728–4732 (1989).
[CrossRef]

M.-T. Zhao, B. P. Singh, and P. N. Prasad, “A systematic study of polarizability and microscopic third-order optical nonlinearity in thiophene oligomers,” J. Chem. Phys. 89, 5535–5541 (1988).
[CrossRef]

Rice, J. E.

F. Sim, S. Chin, M. Dupuis, and J. E. Rice, “Electron correlation effects in hyperpolarizabilities of p-nitroaniline,” J. Phys. Chem. 97, 1158–1163 (1993).
[CrossRef]

Richardson, M. C.

K. Sala and M. C. Richardson, “Optical Kerr effect induced by ultrafast laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
[CrossRef]

Sakaguchi, T.

K. Ohta, T. Sakaguchi, K. Kamada, and T. Fukumi, “Ab initio molecular orbital calculation of the second hyperpolarizability of the carbon disulfide molecule: electron correlation and frequency dispersion,” Chem. Phys. Lett. 274, 306–314 (1997).
[CrossRef]

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996).
[CrossRef]

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr study of heavy atom effects on the third-order nonlinearity of thiophene homologues: purely electronic contribution,” Chem. Phys. Lett. 263, 215–222 (1996).
[CrossRef]

K. Ohta, T. Fukumi, and T. Sakaguchi, “Basis set dependence of polarizability and hyperpolarizability of some organic molecules in ab initio molecular orbital calculations,” Nonlinear Opt. 6, 215–227 (1994).

Sala, K.

K. Sala and M. C. Richardson, “Optical Kerr effect induced by ultrafast laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
[CrossRef]

Sasabe, H.

H. Okawa, T. Wada, A. Yamada, and H. Sasabe, “Third-order optical nonlinearity of soluble polythiophenes,” Mater. Res. Soc. Symp. Proc. 214, 23–28 (1991).
[CrossRef]

Sim, F.

F. Sim, S. Chin, M. Dupuis, and J. E. Rice, “Electron correlation effects in hyperpolarizabilities of p-nitroaniline,” J. Phys. Chem. 97, 1158–1163 (1993).
[CrossRef]

Simon, J. D.

H. P. Deuel, P. Cong, and J. D. Simon, “Probing intermolecular dynamics in liquids by femtosecond optical Kerr effect spectroscopy: effects of molecular symmetry,” J. Phys. Chem. 98, 12, 600–12, 608 (1994).
[CrossRef]

Singh, B. P.

M.-T. Zhao, B. P. Singh, and P. N. Prasad, “A systematic study of polarizability and microscopic third-order optical nonlinearity in thiophene oligomers,” J. Chem. Phys. 89, 5535–5541 (1988).
[CrossRef]

Stankus, J. J.

F. W. Deeg, J. J. Stankus, S. R. Greenfiled, V. J. Newell, and M. D. Fayer, “Anisotropic reorientational relaxation of biphenyl: transient grating optical Kerr effect measurements,” J. Chem. Phys. 90, 6893–6902 (1989).
[CrossRef]

Tackx, P. C. E.

J.-L. Brédas, C. Adant, P. C. E. Tackx, A. Persoons, and B. M. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

Takahashi, C.

A. Mito, K. Hagimoto, and C. Takahashi, “Determination of the third-order optical nonlinear susceptibility of fused silica using optical harmonic generation,” Nonlinear Opt. 13, 3–18 (1995).

Tolles, W. M.

G. L. Eesley, M. D. Levenson, and W. M. Tolles, “Optically heterodyned coherent Raman spectroscopy,” IEEE J. Quantum Electron. QE-14, 45–49 (1978).
[CrossRef]

Ueda, M.

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996).
[CrossRef]

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr study of heavy atom effects on the third-order nonlinearity of thiophene homologues: purely electronic contribution,” Chem. Phys. Lett. 263, 215–222 (1996).
[CrossRef]

Wada, T.

H. Okawa, T. Wada, A. Yamada, and H. Sasabe, “Third-order optical nonlinearity of soluble polythiophenes,” Mater. Res. Soc. Symp. Proc. 214, 23–28 (1991).
[CrossRef]

Wadt, W. R.

W. R. Wadt and P. J. Hay, “Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi,” J. Chem. Phys. 82, 284–298 (1985).
[CrossRef]

Wijekoon, W. M. K. P.

V. Keshari, W. M. K. P. Wijekoon, P. N. Prasad, and S. P. Karna, “Hyperpolarizabilities of organic molecules: ab initio time-dependent coupled perturbed Hartree–Fock–Roothaan studies of basic heterocyclic structures,” J. Phys. Chem. 99, 9045–9050 (1995).
[CrossRef]

Yagi, T.

S. Kinoshita, Y. Kai, M. Yamaguchi, and T. Yagi, “Direct comparison of femtosecond Fourier-transform Raman spectrum with spontaneous light scattering spectrum,” Chem. Phys. Lett. 236, 259–264 (1995).
[CrossRef]

Yamada, A.

H. Okawa, T. Wada, A. Yamada, and H. Sasabe, “Third-order optical nonlinearity of soluble polythiophenes,” Mater. Res. Soc. Symp. Proc. 214, 23–28 (1991).
[CrossRef]

Yamaguchi, M.

S. Kinoshita, Y. Kai, M. Yamaguchi, and T. Yagi, “Direct comparison of femtosecond Fourier-transform Raman spectrum with spontaneous light scattering spectrum,” Chem. Phys. Lett. 236, 259–264 (1995).
[CrossRef]

Zhao, M.-T.

M.-T. Zhao, B. P. Singh, and P. N. Prasad, “A systematic study of polarizability and microscopic third-order optical nonlinearity in thiophene oligomers,” J. Chem. Phys. 89, 5535–5541 (1988).
[CrossRef]

Chem. Phys. Lett. (5)

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996).
[CrossRef]

S. Kinoshita, Y. Kai, M. Yamaguchi, and T. Yagi, “Direct comparison of femtosecond Fourier-transform Raman spectrum with spontaneous light scattering spectrum,” Chem. Phys. Lett. 236, 259–264 (1995).
[CrossRef]

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr study of heavy atom effects on the third-order nonlinearity of thiophene homologues: purely electronic contribution,” Chem. Phys. Lett. 263, 215–222 (1996).
[CrossRef]

K. Ohta, T. Sakaguchi, K. Kamada, and T. Fukumi, “Ab initio molecular orbital calculation of the second hyperpolarizability of the carbon disulfide molecule: electron correlation and frequency dispersion,” Chem. Phys. Lett. 274, 306–314 (1997).
[CrossRef]

B. Champagne, “Vibrational polarizability and hyperpolarizability of p-nitroaniline,” Chem. Phys. Lett. 261, 57–65 (1996).
[CrossRef]

Chem. Rev. (1)

J.-L. Brédas, C. Adant, P. C. E. Tackx, A. Persoons, and B. M. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

G. L. Eesley, M. D. Levenson, and W. M. Tolles, “Optically heterodyned coherent Raman spectroscopy,” IEEE J. Quantum Electron. QE-14, 45–49 (1978).
[CrossRef]

J. Chem. Phys. (7)

D. McMorrow and W. T. Lotshaw, “The frequency response of condensed-phase media to femtosecond optical pulses: spectral-filter effects,” J. Chem. Phys. 174, 85–94 (1990).

W. R. Wadt and P. J. Hay, “Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi,” J. Chem. Phys. 82, 284–298 (1985).
[CrossRef]

B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63, 2666–2682 (1975).
[CrossRef]

Y. J. Chang and E. W. Castner, Jr., “Fast responses from slowly relaxing liquids: a comparative study of the femtosecond dynamics of triacetin, ethylene glycol, and water,” J. Chem. Phys. 99, 7289–7299 (1993).
[CrossRef]

F. W. Deeg, J. J. Stankus, S. R. Greenfiled, V. J. Newell, and M. D. Fayer, “Anisotropic reorientational relaxation of biphenyl: transient grating optical Kerr effect measurements,” J. Chem. Phys. 90, 6893–6902 (1989).
[CrossRef]

M.-T. Zhao, B. P. Singh, and P. N. Prasad, “A systematic study of polarizability and microscopic third-order optical nonlinearity in thiophene oligomers,” J. Chem. Phys. 89, 5535–5541 (1988).
[CrossRef]

E. Perrin, P. N. Prasad, P. Mougenot, and M. Dupuis, “Ab initio calculations of polarizability and second hyperpolarizability in benzene including electron correlation treated by Møller–Plesset theory,” J. Chem. Phys. 91, 4728–4732 (1989).
[CrossRef]

J. Phys. Chem. (3)

F. Sim, S. Chin, M. Dupuis, and J. E. Rice, “Electron correlation effects in hyperpolarizabilities of p-nitroaniline,” J. Phys. Chem. 97, 1158–1163 (1993).
[CrossRef]

H. P. Deuel, P. Cong, and J. D. Simon, “Probing intermolecular dynamics in liquids by femtosecond optical Kerr effect spectroscopy: effects of molecular symmetry,” J. Phys. Chem. 98, 12, 600–12, 608 (1994).
[CrossRef]

V. Keshari, W. M. K. P. Wijekoon, P. N. Prasad, and S. P. Karna, “Hyperpolarizabilities of organic molecules: ab initio time-dependent coupled perturbed Hartree–Fock–Roothaan studies of basic heterocyclic structures,” J. Phys. Chem. 99, 9045–9050 (1995).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

H. Okawa, T. Wada, A. Yamada, and H. Sasabe, “Third-order optical nonlinearity of soluble polythiophenes,” Mater. Res. Soc. Symp. Proc. 214, 23–28 (1991).
[CrossRef]

Nonlinear Opt. (2)

A. Mito, K. Hagimoto, and C. Takahashi, “Determination of the third-order optical nonlinear susceptibility of fused silica using optical harmonic generation,” Nonlinear Opt. 13, 3–18 (1995).

K. Ohta, T. Fukumi, and T. Sakaguchi, “Basis set dependence of polarizability and hyperpolarizability of some organic molecules in ab initio molecular orbital calculations,” Nonlinear Opt. 6, 215–227 (1994).

Opt. Commun. (1)

D. McMorrow, “Separation of nuclear and electronic contributions to femtosecond four-wave mixing data,” Opt. Commun. 86, 236–244 (1991).
[CrossRef]

Phys. Rev. A (1)

K. Sala and M. C. Richardson, “Optical Kerr effect induced by ultrafast laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
[CrossRef]

Rev. Mod. Phys. (1)

D. M. Bishop, “Molecular vibrational and rotational motion in static and dynamic electric fields,” Rev. Mod. Phys. 62, 343–374 (1990).
[CrossRef]

Other (5)

G. Varsányi, L. Nyulśzi, T. Veszprémi, and T. Narisawa, “Vibronic analysis and symmetry of the lowest energy ultraviolet transition of thiophene,” J. Chem. Soc. Perkin Trans. 2, 761–765 (1982).

M. Kuzyk, “All-optical materials and devices,” in Organic Thin Films for Waveguiding Nonlinear Optics, F. Kajzar and J. D. Swalen, eds. (Gordon & Breach, Philadelphia, Pa., 1996), pp. 759–820.

F. Fringuelli, G. Marino, and A. Taticchi, “Tellurophene and related compounds,” Adv. Heterocycl. Chem. 21, 119–173 (1977).

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Jhonson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, GAUSSIAN 92 Software program (Gaussian, Inc., Pittsburgh, Pa., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical Kerr responses measured at A, 750 nm and B, 790 nm for a, furan; b, thiophene; c, selenophene; d, carbon tetrachloride. Signal intensity is normalized with respect to the peak intensity of carbon tetrachloride at each wavelength.

Fig. 2
Fig. 2

Real part of Fourier-transformed spectra for a, furan; b, thiophene; c, selenophene; d, carbon tetrachloride obtained from the data measured A, at 750 nm and B, at 790 nm.

Fig. 3
Fig. 3

Molecular fixed Cartesian coordinate for thiophene homologues (X=O, S, Se).

Tables (3)

Tables Icon

Table 1 Refractive Indices and Relative Values of Peak OKE Signal Intensities, Proportions of Electronic Nonlinearity, Electronic Third-Order Susceptibilities, and Second Hyperpolarizabilities of Thiophene Homologues

Tables Icon

Table 2 Ab Initio HF MO Calculation of Second Hyperpolarizability for Thiophene Homologues (in atomic units)

Tables Icon

Table 3 Comparison between Orientationally Averaged Second Hyperpolarizabilities Obtained by OHD OKE Experiment and ab Initio HF MO Calculation

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

IH=nc2π (AsigALO*+Asig*ALO),
Asigi 2πω2k1c2 L[χYXYX(3)A2XA2Y*A1X+χYXXY(3)A2X*A2YA1X],
IH8π2ω2k1nc3 Re[χ(3)]I1I2L,
IH(τ)=-τS(t)G(τ-t)dt,
G(ω)=GE(ω)+GN(ω).
Re[G(ω)]=Re[IH(ω)/S(ω)]=gy+Re[GN(ω)].
IH(τ)=ξS(τ)IH(τmax)+-τS(t)GN(τ-t)dtIH(τmax).
IH,E(0)=ξI(τmax).
χ˜(3)=χS(3)χR(3)=nSnR2 IH,SLRIH,RLS,
χ˜E(3)=nSnR2 ξSξR IH,S(τmax)IH,R(τmax) LRLS.
γ˜=χ˜E(3)(NRfR4)/(NSfS4),
γ=1/5(γxxxx+γyyyy+γzzzz+2γxxyy+2γxxzz+2γyyzz).
p=αF+1/2βFF+1/6γFFF+
pexp=αexpF+βexpFF+γexpFFF+
γn,m,nμ0nμnmμmnμn0En0Em0En0,

Metrics