Abstract

Results are presented on the two-photon absorption and fluorescence properties of a new molecular crystal based on (E)-(E)-4-(p-N,N-dimethylaniline)-1-cyano-1-di(ethoxy)phosphinoylbuta-1,3-diene (DCP). This material shows a two-photon-induced fluorescence when excited in the infrared, in powder 6 times that obtained from a [2-[2-[4-dimethylaminophenyl]ethenyl]-6-methyl-4H-pyron-4-ylidene]propanedinitrile powder excited at 1.064 μm, and 50 times that of a 1-cm-long Rhodamine 640 solution (2 mM in methanol). Pulsed photoacoustic spectroscopy has been used to characterize the two-photon absorption band of the crystalline state. A high two-photon absorption coefficient, β=15 cm/GW, is reported, and an energy-conversion yield of 2.0% (incoherent fluorescence) was obtained in a DCP monocrystal in a single-pass beam configuration. Finally, a correlation is shown between the polarization of the excitation radiation and the crystalline structure of the material.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Williams, ed., Nonlinear Optical Properties of Organic and Polymeric Molecules and Crystals, ACS Symp. Ser. 233 (1983).
  2. D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1986).
  3. M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–858 (1990).
    [CrossRef]
  4. G. Gabrielli and F. Rustichelli, eds., Proceedings of the Seventh International Conference on Organized Molecular Films, Thin Solid Films 284–285 (1996).
  5. J. Messier, F. Kajzar, and P. Prasad, Organic Molecules for Nonlinear Optics and Photonics, Vol. 194 of NATO ASI Series E, Applied Sciences (North-Holland, Amsterdam, 1990).
  6. J.-F. Nicoud and R. W. Twieg, “Design and synthesis of organic molecular compounds for efficient second harmonic generation,” Ref. 2, Chap. 2.
  7. S. R. Marder, D. N. Beratan, and L.-T. Cheng, “Approaches for optimizing the first electronic hyperpolarisability of conjugated organic molecules,” Science 252, 103–106 (1991).
    [CrossRef] [PubMed]
  8. D. R. Dai, M. A. Hubbard, J. Parks, T. J. Marks, J. Wang, G. J. Wong, and G. KeLun, “Rational design and construction of polymers with large second order optical nonlinearities. Synthetic strategies for enhanced chromophore number densities and frequency doubling temporal stabilities,” Mol. Cryst. Liq. Cryst. 189, 93–106 (1990).
  9. J. Zyss, J.-F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160–4167 (1984).
    [CrossRef]
  10. W. Tam, B. Guerin, J. C. Calabrese, and S. H. Stevenson, “3-methyl-4-methoxy-4-nitrostilbene (MMONS): crystal structure of a highly efficient material for second-harmonic generation,” Chem. Phys. Lett. 154, 93–96 (1989).
    [CrossRef]
  11. J. Zyss and J. L. Oudar, “Relation between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units,” Phys. Rev. A 26, 2028–2048 (1982).
    [CrossRef]
  12. J. Zyss, D. S. Chemla, and J. F. Nicoud, “Demonstration of efficient nonlinear optical crystals with vanishing molecular dipole moment: second-harmonic generation in 3-methyl-4-nitropyridine-1-oxide,” J. Chem. Phys. 74, 4800–4811 (1981).
    [CrossRef]
  13. Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, “85% efficiency for cw frequency doubling from 1.08 to 0.54 μm,” Opt. Lett. 17, 640–642 (1992).
    [CrossRef] [PubMed]
  14. G. Puccetti, A. Perigaud, J. Badan, I. Ledoux, and J. Zyss, “5-Nitrouracil: a transparent and efficient nonlinear organic crystal,” J. Opt. Soc. Am. B 10, 733–744 (1993).
    [CrossRef]
  15. K. Nakanishi, I. Suemune, Y. Fujii, Y. Kuroda, and M. Yamanashi, “Extremely-low-threshold and high temperature operation in a photopumped ZnSe/ZnSSe blue laser,” Appl. Phys. Lett. 59, 1401–1403 (1991).
    [CrossRef]
  16. T. Hebert, R. Wannemacher, R. M. MacFarlane, and W. Length, “Blue continuously pumped upconversion lasing in Tm:YLiF4,” Appl. Phys. Lett. 60, 2592–2594 (1992).
    [CrossRef]
  17. Z.-G. Wang and H.-R. Xia, Molecular and Laser Spectroscopy, Vol. 50 of Springer Series in Chemistry (Springer-Verlag, Berlin, 1991).
    [CrossRef]
  18. M. D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1987).
  19. F. T. Arechi and E. O. Schulz-Dubois, Laser Handbook (North-Holland, Amsterdam, 1972).
  20. V. Nathan, A. H. Guenther, and S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” J. Opt. Soc. Am. B 2, 294–316 (1985).
    [CrossRef]
  21. B. M. Pierce, “A theoretical analysis of third-order nonlinear optical properties of linear polyenes and benzene,” J. Chem. Phys. 91, 791–811 (1989).
    [CrossRef]
  22. Z. G. Soos and S. Ramasesha, “Valence bond approach to exact nonlinear optical properties of conjugated systems,” J. Chem. Phys. 90, 1067–1075 (1989).
    [CrossRef]
  23. J. R. Heflin, Y. M. Cai, and A. F. Garito, “Dispersion measurements of electric-field induced second-harmonic generation and third-harmonic generation in conjugated linear chains,” J. Opt. Soc. Am. B 8, 2132–2147 (1991).
    [CrossRef]
  24. N. Pfeffer, P. Raimond, F. Charra, and J.-M. Nunzi, “Determination of the two-photon absorption spectrum of a soluble polythiophene,” Chem. Phys. Lett. 201, 357–360 (1993).
    [CrossRef]
  25. G. S. He, J. Zieba, J. T. Bradshaw, M. R. Kazmierczak, and P. N. Prasad, “Two-photon induced fluorescence behavior of DEANST organic crystal,” Opt. Commun. 104, 102–106 (1993).
    [CrossRef]
  26. J. C. Murphy, J. W. Machlachlan Spicer, L. C. Aamodt, and B. S. H. Royce, Photoacoustic and Photothermal Phenomena II, Vol. 62 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1989).
  27. S. E. Braslawsky, “Photoacoustic and photothermal methods applied to the study of radiationless deactivation processes in biological systems and in substances of biological interest,” Photochem. Photobiol. 43, 667–675 (1986).
    [CrossRef]
  28. A. Mandelis and B. S. H. Royce, “Time-domain photoacoustic spectroscopy of solids,” J. Appl. Phys. 50, 4330–4338 (1979).
    [CrossRef]
  29. C. K. N. Patel and A. C. Tam, “Pulsed photoacoustic spectroscopy of condensed matter,” Rev. Mod. Instrum. 53, 517–550 (1981).
  30. S. E. Braslawsky and G. E. Heibel, “Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution,” Chem. Rev. 92, 1381–1410 (1992).
    [CrossRef]
  31. J.-M. Heritier, and A. E. Siegman, “Picosecond measurements using photoacoustic detection,” IEEE J. Quantum Electron. QE-19, 1551–1557 (1983).
    [CrossRef]
  32. R. Phillip, P. Sathy, V. P. M. Nampoori, J. Phillip, and C. P. G. Vallabhan, “Characteristics of two-photon absorption in methanol solutions of Rhodamine 6G using laser induced pulsed photoacoustics,” J. Phys. B 25, 155–161 (1992).
    [CrossRef]
  33. Enraf-Nonius, Inc., MolEN: An Interactive Structure Solution Program (Enraf-Nonius, Delft, The Netherlands, 1990).
  34. G. M. Sheldrick, in Crystallographic Computing, G. M. Sheldrick, C. Kruger, and R. Goddard, eds. (Oxford U. Press, Oxford, 1985), pp. 184–189.
  35. G. Puccetti and R. M. Leblanc, “A comparative study on chromophore diffusion inside porous filters by pulsed photoacoustic spectroscopy,” J. Membr. Sci. (to be published).
  36. F. Lahjomri, G. Puccetti, R. M. Leblanc, V. Allard, and A. Denis, “Photoacoustic study of the diffusion of chromophores in human skin,” Photochem. Photobiol. 65, 292–302 (1997).
    [CrossRef] [PubMed]
  37. G. Mignani, G. Soula, and R. Meyrueix, “Nonlinear optical organic compounds and electrooptical devices containing them,” French patent FR 2,636,441 (Cl. G02F1/35; March 16, 1990).
  38. P. W. Atkins, Physical Chemistry, 4th ed. (Oxford U. Press, Oxford, 1990).
  39. A. Mukherjee, “Two-photon pumped upconverted lasing in dye doped polymer waveguides,” Appl. Phys. Lett. 62, 3423–3425 (1993).
    [CrossRef]
  40. F. Boss, “Versatile high-power single-longitudinal-mode pulsed dye laser,” Appl. Opt. 20, 1886–1890 (1981).
    [CrossRef]
  41. G. S. He, C. F. Zhao, J. D. Bawhalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rod,” Appl. Phys. Lett. 67, 3703–3705 (1995).
    [CrossRef]
  42. J. D. Bhawalkar, G. S. He, C.-K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 12, 33–37 (1996).
    [CrossRef]

1997

F. Lahjomri, G. Puccetti, R. M. Leblanc, V. Allard, and A. Denis, “Photoacoustic study of the diffusion of chromophores in human skin,” Photochem. Photobiol. 65, 292–302 (1997).
[CrossRef] [PubMed]

1996

J. D. Bhawalkar, G. S. He, C.-K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 12, 33–37 (1996).
[CrossRef]

1995

G. S. He, C. F. Zhao, J. D. Bawhalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rod,” Appl. Phys. Lett. 67, 3703–3705 (1995).
[CrossRef]

1993

A. Mukherjee, “Two-photon pumped upconverted lasing in dye doped polymer waveguides,” Appl. Phys. Lett. 62, 3423–3425 (1993).
[CrossRef]

G. Puccetti, A. Perigaud, J. Badan, I. Ledoux, and J. Zyss, “5-Nitrouracil: a transparent and efficient nonlinear organic crystal,” J. Opt. Soc. Am. B 10, 733–744 (1993).
[CrossRef]

N. Pfeffer, P. Raimond, F. Charra, and J.-M. Nunzi, “Determination of the two-photon absorption spectrum of a soluble polythiophene,” Chem. Phys. Lett. 201, 357–360 (1993).
[CrossRef]

G. S. He, J. Zieba, J. T. Bradshaw, M. R. Kazmierczak, and P. N. Prasad, “Two-photon induced fluorescence behavior of DEANST organic crystal,” Opt. Commun. 104, 102–106 (1993).
[CrossRef]

1992

T. Hebert, R. Wannemacher, R. M. MacFarlane, and W. Length, “Blue continuously pumped upconversion lasing in Tm:YLiF4,” Appl. Phys. Lett. 60, 2592–2594 (1992).
[CrossRef]

Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, “85% efficiency for cw frequency doubling from 1.08 to 0.54 μm,” Opt. Lett. 17, 640–642 (1992).
[CrossRef] [PubMed]

S. E. Braslawsky and G. E. Heibel, “Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution,” Chem. Rev. 92, 1381–1410 (1992).
[CrossRef]

R. Phillip, P. Sathy, V. P. M. Nampoori, J. Phillip, and C. P. G. Vallabhan, “Characteristics of two-photon absorption in methanol solutions of Rhodamine 6G using laser induced pulsed photoacoustics,” J. Phys. B 25, 155–161 (1992).
[CrossRef]

1991

J. R. Heflin, Y. M. Cai, and A. F. Garito, “Dispersion measurements of electric-field induced second-harmonic generation and third-harmonic generation in conjugated linear chains,” J. Opt. Soc. Am. B 8, 2132–2147 (1991).
[CrossRef]

K. Nakanishi, I. Suemune, Y. Fujii, Y. Kuroda, and M. Yamanashi, “Extremely-low-threshold and high temperature operation in a photopumped ZnSe/ZnSSe blue laser,” Appl. Phys. Lett. 59, 1401–1403 (1991).
[CrossRef]

S. R. Marder, D. N. Beratan, and L.-T. Cheng, “Approaches for optimizing the first electronic hyperpolarisability of conjugated organic molecules,” Science 252, 103–106 (1991).
[CrossRef] [PubMed]

1990

D. R. Dai, M. A. Hubbard, J. Parks, T. J. Marks, J. Wang, G. J. Wong, and G. KeLun, “Rational design and construction of polymers with large second order optical nonlinearities. Synthetic strategies for enhanced chromophore number densities and frequency doubling temporal stabilities,” Mol. Cryst. Liq. Cryst. 189, 93–106 (1990).

M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–858 (1990).
[CrossRef]

1989

W. Tam, B. Guerin, J. C. Calabrese, and S. H. Stevenson, “3-methyl-4-methoxy-4-nitrostilbene (MMONS): crystal structure of a highly efficient material for second-harmonic generation,” Chem. Phys. Lett. 154, 93–96 (1989).
[CrossRef]

B. M. Pierce, “A theoretical analysis of third-order nonlinear optical properties of linear polyenes and benzene,” J. Chem. Phys. 91, 791–811 (1989).
[CrossRef]

Z. G. Soos and S. Ramasesha, “Valence bond approach to exact nonlinear optical properties of conjugated systems,” J. Chem. Phys. 90, 1067–1075 (1989).
[CrossRef]

1986

S. E. Braslawsky, “Photoacoustic and photothermal methods applied to the study of radiationless deactivation processes in biological systems and in substances of biological interest,” Photochem. Photobiol. 43, 667–675 (1986).
[CrossRef]

1985

1984

J. Zyss, J.-F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160–4167 (1984).
[CrossRef]

1983

J.-M. Heritier, and A. E. Siegman, “Picosecond measurements using photoacoustic detection,” IEEE J. Quantum Electron. QE-19, 1551–1557 (1983).
[CrossRef]

1982

J. Zyss and J. L. Oudar, “Relation between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units,” Phys. Rev. A 26, 2028–2048 (1982).
[CrossRef]

1981

J. Zyss, D. S. Chemla, and J. F. Nicoud, “Demonstration of efficient nonlinear optical crystals with vanishing molecular dipole moment: second-harmonic generation in 3-methyl-4-nitropyridine-1-oxide,” J. Chem. Phys. 74, 4800–4811 (1981).
[CrossRef]

F. Boss, “Versatile high-power single-longitudinal-mode pulsed dye laser,” Appl. Opt. 20, 1886–1890 (1981).
[CrossRef]

1979

A. Mandelis and B. S. H. Royce, “Time-domain photoacoustic spectroscopy of solids,” J. Appl. Phys. 50, 4330–4338 (1979).
[CrossRef]

Allard, V.

F. Lahjomri, G. Puccetti, R. M. Leblanc, V. Allard, and A. Denis, “Photoacoustic study of the diffusion of chromophores in human skin,” Photochem. Photobiol. 65, 292–302 (1997).
[CrossRef] [PubMed]

Badan, J.

Bawhalkar, J. D.

G. S. He, C. F. Zhao, J. D. Bawhalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rod,” Appl. Phys. Lett. 67, 3703–3705 (1995).
[CrossRef]

Beratan, D. N.

S. R. Marder, D. N. Beratan, and L.-T. Cheng, “Approaches for optimizing the first electronic hyperpolarisability of conjugated organic molecules,” Science 252, 103–106 (1991).
[CrossRef] [PubMed]

Bhawalkar, J. D.

J. D. Bhawalkar, G. S. He, C.-K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 12, 33–37 (1996).
[CrossRef]

Boss, F.

Bradshaw, J. T.

G. S. He, J. Zieba, J. T. Bradshaw, M. R. Kazmierczak, and P. N. Prasad, “Two-photon induced fluorescence behavior of DEANST organic crystal,” Opt. Commun. 104, 102–106 (1993).
[CrossRef]

Braslawsky, S. E.

S. E. Braslawsky and G. E. Heibel, “Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution,” Chem. Rev. 92, 1381–1410 (1992).
[CrossRef]

S. E. Braslawsky, “Photoacoustic and photothermal methods applied to the study of radiationless deactivation processes in biological systems and in substances of biological interest,” Photochem. Photobiol. 43, 667–675 (1986).
[CrossRef]

Cai, Y. M.

Calabrese, J. C.

W. Tam, B. Guerin, J. C. Calabrese, and S. H. Stevenson, “3-methyl-4-methoxy-4-nitrostilbene (MMONS): crystal structure of a highly efficient material for second-harmonic generation,” Chem. Phys. Lett. 154, 93–96 (1989).
[CrossRef]

Charra, F.

N. Pfeffer, P. Raimond, F. Charra, and J.-M. Nunzi, “Determination of the two-photon absorption spectrum of a soluble polythiophene,” Chem. Phys. Lett. 201, 357–360 (1993).
[CrossRef]

Chemla, D. S.

J. Zyss, D. S. Chemla, and J. F. Nicoud, “Demonstration of efficient nonlinear optical crystals with vanishing molecular dipole moment: second-harmonic generation in 3-methyl-4-nitropyridine-1-oxide,” J. Chem. Phys. 74, 4800–4811 (1981).
[CrossRef]

Cheng, L.-T.

S. R. Marder, D. N. Beratan, and L.-T. Cheng, “Approaches for optimizing the first electronic hyperpolarisability of conjugated organic molecules,” Science 252, 103–106 (1991).
[CrossRef] [PubMed]

Coquillay, M.

J. Zyss, J.-F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160–4167 (1984).
[CrossRef]

Dai, D. R.

D. R. Dai, M. A. Hubbard, J. Parks, T. J. Marks, J. Wang, G. J. Wong, and G. KeLun, “Rational design and construction of polymers with large second order optical nonlinearities. Synthetic strategies for enhanced chromophore number densities and frequency doubling temporal stabilities,” Mol. Cryst. Liq. Cryst. 189, 93–106 (1990).

Denis, A.

F. Lahjomri, G. Puccetti, R. M. Leblanc, V. Allard, and A. Denis, “Photoacoustic study of the diffusion of chromophores in human skin,” Photochem. Photobiol. 65, 292–302 (1997).
[CrossRef] [PubMed]

Dirk, C. W.

Fujii, Y.

K. Nakanishi, I. Suemune, Y. Fujii, Y. Kuroda, and M. Yamanashi, “Extremely-low-threshold and high temperature operation in a photopumped ZnSe/ZnSSe blue laser,” Appl. Phys. Lett. 59, 1401–1403 (1991).
[CrossRef]

Garito, A. F.

Guenther, A. H.

Guerin, B.

W. Tam, B. Guerin, J. C. Calabrese, and S. H. Stevenson, “3-methyl-4-methoxy-4-nitrostilbene (MMONS): crystal structure of a highly efficient material for second-harmonic generation,” Chem. Phys. Lett. 154, 93–96 (1989).
[CrossRef]

He, G. S.

J. D. Bhawalkar, G. S. He, C.-K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 12, 33–37 (1996).
[CrossRef]

G. S. He, C. F. Zhao, J. D. Bawhalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rod,” Appl. Phys. Lett. 67, 3703–3705 (1995).
[CrossRef]

G. S. He, J. Zieba, J. T. Bradshaw, M. R. Kazmierczak, and P. N. Prasad, “Two-photon induced fluorescence behavior of DEANST organic crystal,” Opt. Commun. 104, 102–106 (1993).
[CrossRef]

Hebert, T.

T. Hebert, R. Wannemacher, R. M. MacFarlane, and W. Length, “Blue continuously pumped upconversion lasing in Tm:YLiF4,” Appl. Phys. Lett. 60, 2592–2594 (1992).
[CrossRef]

Heflin, J. R.

Heibel, G. E.

S. E. Braslawsky and G. E. Heibel, “Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution,” Chem. Rev. 92, 1381–1410 (1992).
[CrossRef]

Heritier, J.-M.

J.-M. Heritier, and A. E. Siegman, “Picosecond measurements using photoacoustic detection,” IEEE J. Quantum Electron. QE-19, 1551–1557 (1983).
[CrossRef]

Hubbard, M. A.

D. R. Dai, M. A. Hubbard, J. Parks, T. J. Marks, J. Wang, G. J. Wong, and G. KeLun, “Rational design and construction of polymers with large second order optical nonlinearities. Synthetic strategies for enhanced chromophore number densities and frequency doubling temporal stabilities,” Mol. Cryst. Liq. Cryst. 189, 93–106 (1990).

Kazmierczak, M. R.

G. S. He, J. Zieba, J. T. Bradshaw, M. R. Kazmierczak, and P. N. Prasad, “Two-photon induced fluorescence behavior of DEANST organic crystal,” Opt. Commun. 104, 102–106 (1993).
[CrossRef]

KeLun, G.

D. R. Dai, M. A. Hubbard, J. Parks, T. J. Marks, J. Wang, G. J. Wong, and G. KeLun, “Rational design and construction of polymers with large second order optical nonlinearities. Synthetic strategies for enhanced chromophore number densities and frequency doubling temporal stabilities,” Mol. Cryst. Liq. Cryst. 189, 93–106 (1990).

Kimble, H. J.

Kuroda, Y.

K. Nakanishi, I. Suemune, Y. Fujii, Y. Kuroda, and M. Yamanashi, “Extremely-low-threshold and high temperature operation in a photopumped ZnSe/ZnSSe blue laser,” Appl. Phys. Lett. 59, 1401–1403 (1991).
[CrossRef]

Kuzyk, M. G.

Lahjomri, F.

F. Lahjomri, G. Puccetti, R. M. Leblanc, V. Allard, and A. Denis, “Photoacoustic study of the diffusion of chromophores in human skin,” Photochem. Photobiol. 65, 292–302 (1997).
[CrossRef] [PubMed]

Leblanc, R. M.

F. Lahjomri, G. Puccetti, R. M. Leblanc, V. Allard, and A. Denis, “Photoacoustic study of the diffusion of chromophores in human skin,” Photochem. Photobiol. 65, 292–302 (1997).
[CrossRef] [PubMed]

Ledoux, I.

Length, W.

T. Hebert, R. Wannemacher, R. M. MacFarlane, and W. Length, “Blue continuously pumped upconversion lasing in Tm:YLiF4,” Appl. Phys. Lett. 60, 2592–2594 (1992).
[CrossRef]

MacFarlane, R. M.

T. Hebert, R. Wannemacher, R. M. MacFarlane, and W. Length, “Blue continuously pumped upconversion lasing in Tm:YLiF4,” Appl. Phys. Lett. 60, 2592–2594 (1992).
[CrossRef]

Mandelis, A.

A. Mandelis and B. S. H. Royce, “Time-domain photoacoustic spectroscopy of solids,” J. Appl. Phys. 50, 4330–4338 (1979).
[CrossRef]

Marder, S. R.

S. R. Marder, D. N. Beratan, and L.-T. Cheng, “Approaches for optimizing the first electronic hyperpolarisability of conjugated organic molecules,” Science 252, 103–106 (1991).
[CrossRef] [PubMed]

Marks, T. J.

D. R. Dai, M. A. Hubbard, J. Parks, T. J. Marks, J. Wang, G. J. Wong, and G. KeLun, “Rational design and construction of polymers with large second order optical nonlinearities. Synthetic strategies for enhanced chromophore number densities and frequency doubling temporal stabilities,” Mol. Cryst. Liq. Cryst. 189, 93–106 (1990).

Mitra, S. S.

Mukherjee, A.

A. Mukherjee, “Two-photon pumped upconverted lasing in dye doped polymer waveguides,” Appl. Phys. Lett. 62, 3423–3425 (1993).
[CrossRef]

Nakanishi, K.

K. Nakanishi, I. Suemune, Y. Fujii, Y. Kuroda, and M. Yamanashi, “Extremely-low-threshold and high temperature operation in a photopumped ZnSe/ZnSSe blue laser,” Appl. Phys. Lett. 59, 1401–1403 (1991).
[CrossRef]

Nampoori, V. P. M.

R. Phillip, P. Sathy, V. P. M. Nampoori, J. Phillip, and C. P. G. Vallabhan, “Characteristics of two-photon absorption in methanol solutions of Rhodamine 6G using laser induced pulsed photoacoustics,” J. Phys. B 25, 155–161 (1992).
[CrossRef]

Nathan, V.

Nicoud, J. F.

J. Zyss, D. S. Chemla, and J. F. Nicoud, “Demonstration of efficient nonlinear optical crystals with vanishing molecular dipole moment: second-harmonic generation in 3-methyl-4-nitropyridine-1-oxide,” J. Chem. Phys. 74, 4800–4811 (1981).
[CrossRef]

Nicoud, J.-F.

J. Zyss, J.-F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160–4167 (1984).
[CrossRef]

Nunzi, J.-M.

N. Pfeffer, P. Raimond, F. Charra, and J.-M. Nunzi, “Determination of the two-photon absorption spectrum of a soluble polythiophene,” Chem. Phys. Lett. 201, 357–360 (1993).
[CrossRef]

Ou, Z. Y.

Oudar, J. L.

J. Zyss and J. L. Oudar, “Relation between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units,” Phys. Rev. A 26, 2028–2048 (1982).
[CrossRef]

Park, C.-K.

J. D. Bhawalkar, G. S. He, C.-K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 12, 33–37 (1996).
[CrossRef]

Parks, J.

D. R. Dai, M. A. Hubbard, J. Parks, T. J. Marks, J. Wang, G. J. Wong, and G. KeLun, “Rational design and construction of polymers with large second order optical nonlinearities. Synthetic strategies for enhanced chromophore number densities and frequency doubling temporal stabilities,” Mol. Cryst. Liq. Cryst. 189, 93–106 (1990).

Pereira, S. F.

Perigaud, A.

Pfeffer, N.

N. Pfeffer, P. Raimond, F. Charra, and J.-M. Nunzi, “Determination of the two-photon absorption spectrum of a soluble polythiophene,” Chem. Phys. Lett. 201, 357–360 (1993).
[CrossRef]

Phillip, J.

R. Phillip, P. Sathy, V. P. M. Nampoori, J. Phillip, and C. P. G. Vallabhan, “Characteristics of two-photon absorption in methanol solutions of Rhodamine 6G using laser induced pulsed photoacoustics,” J. Phys. B 25, 155–161 (1992).
[CrossRef]

Phillip, R.

R. Phillip, P. Sathy, V. P. M. Nampoori, J. Phillip, and C. P. G. Vallabhan, “Characteristics of two-photon absorption in methanol solutions of Rhodamine 6G using laser induced pulsed photoacoustics,” J. Phys. B 25, 155–161 (1992).
[CrossRef]

Pierce, B. M.

B. M. Pierce, “A theoretical analysis of third-order nonlinear optical properties of linear polyenes and benzene,” J. Chem. Phys. 91, 791–811 (1989).
[CrossRef]

Polzik, E. S.

Prasad, P. N.

J. D. Bhawalkar, G. S. He, C.-K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 12, 33–37 (1996).
[CrossRef]

G. S. He, C. F. Zhao, J. D. Bawhalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rod,” Appl. Phys. Lett. 67, 3703–3705 (1995).
[CrossRef]

G. S. He, J. Zieba, J. T. Bradshaw, M. R. Kazmierczak, and P. N. Prasad, “Two-photon induced fluorescence behavior of DEANST organic crystal,” Opt. Commun. 104, 102–106 (1993).
[CrossRef]

Puccetti, G.

F. Lahjomri, G. Puccetti, R. M. Leblanc, V. Allard, and A. Denis, “Photoacoustic study of the diffusion of chromophores in human skin,” Photochem. Photobiol. 65, 292–302 (1997).
[CrossRef] [PubMed]

G. Puccetti, A. Perigaud, J. Badan, I. Ledoux, and J. Zyss, “5-Nitrouracil: a transparent and efficient nonlinear organic crystal,” J. Opt. Soc. Am. B 10, 733–744 (1993).
[CrossRef]

Raimond, P.

N. Pfeffer, P. Raimond, F. Charra, and J.-M. Nunzi, “Determination of the two-photon absorption spectrum of a soluble polythiophene,” Chem. Phys. Lett. 201, 357–360 (1993).
[CrossRef]

Ramasesha, S.

Z. G. Soos and S. Ramasesha, “Valence bond approach to exact nonlinear optical properties of conjugated systems,” J. Chem. Phys. 90, 1067–1075 (1989).
[CrossRef]

Royce, B. S. H.

A. Mandelis and B. S. H. Royce, “Time-domain photoacoustic spectroscopy of solids,” J. Appl. Phys. 50, 4330–4338 (1979).
[CrossRef]

Ruland, G.

J. D. Bhawalkar, G. S. He, C.-K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 12, 33–37 (1996).
[CrossRef]

Sathy, P.

R. Phillip, P. Sathy, V. P. M. Nampoori, J. Phillip, and C. P. G. Vallabhan, “Characteristics of two-photon absorption in methanol solutions of Rhodamine 6G using laser induced pulsed photoacoustics,” J. Phys. B 25, 155–161 (1992).
[CrossRef]

Siegman, A. E.

J.-M. Heritier, and A. E. Siegman, “Picosecond measurements using photoacoustic detection,” IEEE J. Quantum Electron. QE-19, 1551–1557 (1983).
[CrossRef]

Sohn, J. E.

Soos, Z. G.

Z. G. Soos and S. Ramasesha, “Valence bond approach to exact nonlinear optical properties of conjugated systems,” J. Chem. Phys. 90, 1067–1075 (1989).
[CrossRef]

Stevenson, S. H.

W. Tam, B. Guerin, J. C. Calabrese, and S. H. Stevenson, “3-methyl-4-methoxy-4-nitrostilbene (MMONS): crystal structure of a highly efficient material for second-harmonic generation,” Chem. Phys. Lett. 154, 93–96 (1989).
[CrossRef]

Suemune, I.

K. Nakanishi, I. Suemune, Y. Fujii, Y. Kuroda, and M. Yamanashi, “Extremely-low-threshold and high temperature operation in a photopumped ZnSe/ZnSSe blue laser,” Appl. Phys. Lett. 59, 1401–1403 (1991).
[CrossRef]

Tam, W.

W. Tam, B. Guerin, J. C. Calabrese, and S. H. Stevenson, “3-methyl-4-methoxy-4-nitrostilbene (MMONS): crystal structure of a highly efficient material for second-harmonic generation,” Chem. Phys. Lett. 154, 93–96 (1989).
[CrossRef]

Vallabhan, C. P. G.

R. Phillip, P. Sathy, V. P. M. Nampoori, J. Phillip, and C. P. G. Vallabhan, “Characteristics of two-photon absorption in methanol solutions of Rhodamine 6G using laser induced pulsed photoacoustics,” J. Phys. B 25, 155–161 (1992).
[CrossRef]

Wang, J.

D. R. Dai, M. A. Hubbard, J. Parks, T. J. Marks, J. Wang, G. J. Wong, and G. KeLun, “Rational design and construction of polymers with large second order optical nonlinearities. Synthetic strategies for enhanced chromophore number densities and frequency doubling temporal stabilities,” Mol. Cryst. Liq. Cryst. 189, 93–106 (1990).

Wannemacher, R.

T. Hebert, R. Wannemacher, R. M. MacFarlane, and W. Length, “Blue continuously pumped upconversion lasing in Tm:YLiF4,” Appl. Phys. Lett. 60, 2592–2594 (1992).
[CrossRef]

Wong, G. J.

D. R. Dai, M. A. Hubbard, J. Parks, T. J. Marks, J. Wang, G. J. Wong, and G. KeLun, “Rational design and construction of polymers with large second order optical nonlinearities. Synthetic strategies for enhanced chromophore number densities and frequency doubling temporal stabilities,” Mol. Cryst. Liq. Cryst. 189, 93–106 (1990).

Yamanashi, M.

K. Nakanishi, I. Suemune, Y. Fujii, Y. Kuroda, and M. Yamanashi, “Extremely-low-threshold and high temperature operation in a photopumped ZnSe/ZnSSe blue laser,” Appl. Phys. Lett. 59, 1401–1403 (1991).
[CrossRef]

Zhao, C. F.

J. D. Bhawalkar, G. S. He, C.-K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 12, 33–37 (1996).
[CrossRef]

G. S. He, C. F. Zhao, J. D. Bawhalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rod,” Appl. Phys. Lett. 67, 3703–3705 (1995).
[CrossRef]

Zieba, J.

G. S. He, J. Zieba, J. T. Bradshaw, M. R. Kazmierczak, and P. N. Prasad, “Two-photon induced fluorescence behavior of DEANST organic crystal,” Opt. Commun. 104, 102–106 (1993).
[CrossRef]

Zyss, J.

G. Puccetti, A. Perigaud, J. Badan, I. Ledoux, and J. Zyss, “5-Nitrouracil: a transparent and efficient nonlinear organic crystal,” J. Opt. Soc. Am. B 10, 733–744 (1993).
[CrossRef]

J. Zyss, J.-F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160–4167 (1984).
[CrossRef]

J. Zyss and J. L. Oudar, “Relation between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units,” Phys. Rev. A 26, 2028–2048 (1982).
[CrossRef]

J. Zyss, D. S. Chemla, and J. F. Nicoud, “Demonstration of efficient nonlinear optical crystals with vanishing molecular dipole moment: second-harmonic generation in 3-methyl-4-nitropyridine-1-oxide,” J. Chem. Phys. 74, 4800–4811 (1981).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

G. S. He, C. F. Zhao, J. D. Bawhalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rod,” Appl. Phys. Lett. 67, 3703–3705 (1995).
[CrossRef]

A. Mukherjee, “Two-photon pumped upconverted lasing in dye doped polymer waveguides,” Appl. Phys. Lett. 62, 3423–3425 (1993).
[CrossRef]

K. Nakanishi, I. Suemune, Y. Fujii, Y. Kuroda, and M. Yamanashi, “Extremely-low-threshold and high temperature operation in a photopumped ZnSe/ZnSSe blue laser,” Appl. Phys. Lett. 59, 1401–1403 (1991).
[CrossRef]

T. Hebert, R. Wannemacher, R. M. MacFarlane, and W. Length, “Blue continuously pumped upconversion lasing in Tm:YLiF4,” Appl. Phys. Lett. 60, 2592–2594 (1992).
[CrossRef]

Chem. Phys. Lett.

W. Tam, B. Guerin, J. C. Calabrese, and S. H. Stevenson, “3-methyl-4-methoxy-4-nitrostilbene (MMONS): crystal structure of a highly efficient material for second-harmonic generation,” Chem. Phys. Lett. 154, 93–96 (1989).
[CrossRef]

N. Pfeffer, P. Raimond, F. Charra, and J.-M. Nunzi, “Determination of the two-photon absorption spectrum of a soluble polythiophene,” Chem. Phys. Lett. 201, 357–360 (1993).
[CrossRef]

Chem. Rev.

S. E. Braslawsky and G. E. Heibel, “Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution,” Chem. Rev. 92, 1381–1410 (1992).
[CrossRef]

IEEE J. Quantum Electron.

J.-M. Heritier, and A. E. Siegman, “Picosecond measurements using photoacoustic detection,” IEEE J. Quantum Electron. QE-19, 1551–1557 (1983).
[CrossRef]

J. Appl. Phys.

A. Mandelis and B. S. H. Royce, “Time-domain photoacoustic spectroscopy of solids,” J. Appl. Phys. 50, 4330–4338 (1979).
[CrossRef]

J. Chem. Phys.

J. Zyss, J.-F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160–4167 (1984).
[CrossRef]

B. M. Pierce, “A theoretical analysis of third-order nonlinear optical properties of linear polyenes and benzene,” J. Chem. Phys. 91, 791–811 (1989).
[CrossRef]

Z. G. Soos and S. Ramasesha, “Valence bond approach to exact nonlinear optical properties of conjugated systems,” J. Chem. Phys. 90, 1067–1075 (1989).
[CrossRef]

J. Zyss, D. S. Chemla, and J. F. Nicoud, “Demonstration of efficient nonlinear optical crystals with vanishing molecular dipole moment: second-harmonic generation in 3-methyl-4-nitropyridine-1-oxide,” J. Chem. Phys. 74, 4800–4811 (1981).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

R. Phillip, P. Sathy, V. P. M. Nampoori, J. Phillip, and C. P. G. Vallabhan, “Characteristics of two-photon absorption in methanol solutions of Rhodamine 6G using laser induced pulsed photoacoustics,” J. Phys. B 25, 155–161 (1992).
[CrossRef]

Mol. Cryst. Liq. Cryst.

D. R. Dai, M. A. Hubbard, J. Parks, T. J. Marks, J. Wang, G. J. Wong, and G. KeLun, “Rational design and construction of polymers with large second order optical nonlinearities. Synthetic strategies for enhanced chromophore number densities and frequency doubling temporal stabilities,” Mol. Cryst. Liq. Cryst. 189, 93–106 (1990).

Opt. Commun.

G. S. He, J. Zieba, J. T. Bradshaw, M. R. Kazmierczak, and P. N. Prasad, “Two-photon induced fluorescence behavior of DEANST organic crystal,” Opt. Commun. 104, 102–106 (1993).
[CrossRef]

J. D. Bhawalkar, G. S. He, C.-K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 12, 33–37 (1996).
[CrossRef]

Opt. Lett.

Photochem. Photobiol.

S. E. Braslawsky, “Photoacoustic and photothermal methods applied to the study of radiationless deactivation processes in biological systems and in substances of biological interest,” Photochem. Photobiol. 43, 667–675 (1986).
[CrossRef]

F. Lahjomri, G. Puccetti, R. M. Leblanc, V. Allard, and A. Denis, “Photoacoustic study of the diffusion of chromophores in human skin,” Photochem. Photobiol. 65, 292–302 (1997).
[CrossRef] [PubMed]

Phys. Rev. A

J. Zyss and J. L. Oudar, “Relation between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units,” Phys. Rev. A 26, 2028–2048 (1982).
[CrossRef]

Science

S. R. Marder, D. N. Beratan, and L.-T. Cheng, “Approaches for optimizing the first electronic hyperpolarisability of conjugated organic molecules,” Science 252, 103–106 (1991).
[CrossRef] [PubMed]

Other

D. J. Williams, ed., Nonlinear Optical Properties of Organic and Polymeric Molecules and Crystals, ACS Symp. Ser. 233 (1983).

D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1986).

G. Gabrielli and F. Rustichelli, eds., Proceedings of the Seventh International Conference on Organized Molecular Films, Thin Solid Films 284–285 (1996).

J. Messier, F. Kajzar, and P. Prasad, Organic Molecules for Nonlinear Optics and Photonics, Vol. 194 of NATO ASI Series E, Applied Sciences (North-Holland, Amsterdam, 1990).

J.-F. Nicoud and R. W. Twieg, “Design and synthesis of organic molecular compounds for efficient second harmonic generation,” Ref. 2, Chap. 2.

Z.-G. Wang and H.-R. Xia, Molecular and Laser Spectroscopy, Vol. 50 of Springer Series in Chemistry (Springer-Verlag, Berlin, 1991).
[CrossRef]

M. D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1987).

F. T. Arechi and E. O. Schulz-Dubois, Laser Handbook (North-Holland, Amsterdam, 1972).

G. Mignani, G. Soula, and R. Meyrueix, “Nonlinear optical organic compounds and electrooptical devices containing them,” French patent FR 2,636,441 (Cl. G02F1/35; March 16, 1990).

P. W. Atkins, Physical Chemistry, 4th ed. (Oxford U. Press, Oxford, 1990).

C. K. N. Patel and A. C. Tam, “Pulsed photoacoustic spectroscopy of condensed matter,” Rev. Mod. Instrum. 53, 517–550 (1981).

Enraf-Nonius, Inc., MolEN: An Interactive Structure Solution Program (Enraf-Nonius, Delft, The Netherlands, 1990).

G. M. Sheldrick, in Crystallographic Computing, G. M. Sheldrick, C. Kruger, and R. Goddard, eds. (Oxford U. Press, Oxford, 1985), pp. 184–189.

G. Puccetti and R. M. Leblanc, “A comparative study on chromophore diffusion inside porous filters by pulsed photoacoustic spectroscopy,” J. Membr. Sci. (to be published).

J. C. Murphy, J. W. Machlachlan Spicer, L. C. Aamodt, and B. S. H. Royce, Photoacoustic and Photothermal Phenomena II, Vol. 62 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Experimental setup for pulsed photoacoustic spectroscopy: (F, filter; BS, beam splitter; L, lens; PC, computer).

Fig. 2
Fig. 2

Schematic diagram of the detection cell structure: (CS, crystal sample; A, air; W, window; SM, signal microphone; NM, background noise microphone).

Fig. 3
Fig. 3

Examples of response pulses obtained for a black carbon layer (BCL) and the DCP crystalline samples.

Fig. 4
Fig. 4

Molecular structure of DCP. The atom numbers serve as references for molecule conformations as deduced from x-ray data, i.e., atom coordinates in the crystal unit cell (Table 1 below).

Fig. 5
Fig. 5

Optical absorption and emission (induced by one-photon absorption) spectra in ethanol of the molecules of DCP and Rh 640. The concentrations are 2.7×10-6 and 6.8×10-7 M for the absorption and fluorescence spectra of DCP and Rh 640, respectively.

Fig. 6
Fig. 6

Fluorescence excitation spectra of solutions of DCP at various concentrations in ethanol. The measurement (emission) wavelength was chosen to be 555 nm, the maximum of the emission spectrum obtained from one-photon-induced fluorescence (c0=2×10-6 M). cps, counts per second.

Fig. 7
Fig. 7

Unit cell representation of the DCP crystal containing all 12 molecules.

Fig. 8
Fig. 8

Spatial orientation of DCP molecules inside the crystalline structure.

Fig. 9
Fig. 9

Spatial conformations of the three generic DCP molecules in the crystal structure.

Fig. 10
Fig. 10

Transmission spectrum of a 2-mm-thick DCP monocrystal.

Fig. 11
Fig. 11

(a) TPF spectra of solutions of DCP at various concentrations in ethanol. The excitation wavelength is 1.064 μm, with energies of 24 mJ/pulse. For comparison, the emission spectra of a monocrystal of DCP are presented for OPF with excitation at 532 nm and for TPF with the same excitation energy. (b) Variation of the maximal amplitude and emission wavelength of TPF in solutions of DCP shown in (a).

Fig. 12
Fig. 12

(a) Spectrum of the pulsed photoacoustic response signal Pmax of a crystal of DCP versus the excitation wavelength. (b) Time-delay values tmax plotted as a function of the excitation wavelength.

Fig. 13
Fig. 13

Pulsed photoacoustic spectroscopy response signal amplitude Pmax versus the excitation intensity of the incident light pulses at wavelengths of 532 nm (circles) and 1.064 μm (triangles). Both data series have been fitted by the corresponding power laws.

Fig. 14
Fig. 14

Fluorescence energy as a function of the light polarization and the incidence angle at an excitation wavelength of 1.064 μm.

Fig. 15
Fig. 15

Projection of the DCP unit cell along the median of the ac plane (dielectric plane ZX). The molecules of two unit cells are represented with all nearby neighbor molecules. Light-gray shading is used for the phosphorus atom and its three surrounding oxygens. The lateral extents of the ethoxy terminations of the phosphorus atom are shown by ellipsoids to highlight the intercrossing pattern.

Tables (5)

Tables Icon

Table 1 Atom Coordinates of Molecule a in the DCP Crystal a

Tables Icon

Table 2 Atom Coordinates of Molecule b in the DCP Crystal a

Tables Icon

Table 3 Atom Coordinates of Molecule c in the DCP Crystal a

Tables Icon

Table 4 Two-Photon Energy-Conversion Yields in a 1-mm-Thick DCP Crystal with Excitation Pulses of Selected Energies at 1.064 μm a

Tables Icon

Table 5 Comparative Features of Several Two-Photon-Conversion Materials

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

dIdx=-αI-βI2,
T=II0=(1-R2)exp(-αl)1+βI0l(1-R)1-exp(-αl)αl,
a=0.80717nm,
b=4.4324nm,
c=1.6048nm,
β=100.0258°,
Z=12.
H1=η1I[1-exp(-αl)],
H2=η2I1-11+βIl=η2I2βl1+βl,
η1=2πc10.532-10.622106,
η2=2πc21.064-10.628106,
s1=S1/I,s2=S2/I2,
s1s2=η1η2 1-exp(-αl)βl.

Metrics