Abstract

New multilayer polymer waveguides have been introduced with inverted nonlinear layers for efficient modal dispersion phase-matched second-harmonic generation at the telecommunication wavelength near 1.55 μm. The nonlinear optical core of the waveguides consists of two modified Disperse Red 1–based side-chain polymers with different glass-transition temperatures. The signs of the nonlinear optical coefficients are different in the two polymers after suitable poling above and between the respective glass transitions, thereby optimizing the overlap integral. The optical nonlinearity profile is controlled by in situ electro-optical measurements during the two poling steps. The successful preparation of inverted layers is verified by electro-optical, pyroelectrical, and second-harmonic-generation thermal analysis. Waveguide losses are low at 1.55 μm (4 dB/cm) and high at 800 nm (100 dB/cm) because of the residual absorption of the Disperse Red 1-like chromophores. Phase-matched second-harmonic generation has been demonstrated with a large figure of merit, 14%/W cm-2. Extensive room for improvement in second-harmonic generation is possible with optimized chromophores, because the total conversion efficiency is strongly limited by the harmonic losses in the modified Disperse Red 1.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995).
    [CrossRef] [PubMed]
  2. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
    [CrossRef]
  3. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
    [CrossRef]
  4. A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second-harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
    [CrossRef]
  5. G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
    [CrossRef]
  6. S. Tomaru, T. Watanabe, M. Hikita, M. Amano, Y. Shuto, I. Yokohama, T. Kaino, and M. Asobe, “Quasi-phase-matched second harmonic generation in a polymer waveguide with a periodic poled structure,” Appl. Phys. Lett. 68, 1760–1762 (1996); Y. Shuto, T. Watanabe, S. Tomaru, I. Yokohama, M. Hikita, and M. Amano, “Quasi-phase-matched secondharmonic generation in diazo-dye-substituted polymer channel waveguides,” IEEE J. Quantum Electron. 33, 349–357 (1997).
    [CrossRef]
  7. T. C. Kowalczyk, K. D. Singer, and P. A. Cahill, “Anomalous-dispersion phase-matched second-harmonic generation in a polymer waveguide,” Opt. Lett. 20, 2273–2275 (1995).
    [CrossRef] [PubMed]
  8. K. Clays, J. S. Schildkraut, and D. J. Williams, “Phase-matched second-harmonic generation in a four-layered polymeric waveguide,” J. Opt. Soc. Am. B 11, 655–664 (1994).
    [CrossRef]
  9. M. Jäger, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Möhlmann, “Comparison of quasi-phase-matching geometries for second harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
    [CrossRef]
  10. H. Ito and H. Inaba, “Efficient phase-matched second-harmonic generation method in four-layered optical-waveguide structure,” Opt. Lett. 2, 139–141 (1978).
    [CrossRef] [PubMed]
  11. M. Flörsheimer, M. Küpfer, Ch. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. Commun. 4, 795–798 (1992).
  12. M. Jäger, G. I. Stegeman, G. R. Möhlmann, M. C. Flipse, and M. B. J. Diemeer, “Second harmonic generation in polymeric channel waveguides using modal dispersion,” Electron. Lett. 32, 2009–2010 (1996).
    [CrossRef]
  13. M. Jäger, G. I. Stegeman, M. C. Flipse, M. B. J. Diemeer, and G. R. Möhlmann, “Modal dispersion phase matching over 7 mm length in overdamped polymeric channel waveguides,” Appl. Phys. Lett. 69, 4139–4141 (1996).
    [CrossRef]
  14. M. Küpfer, M. Flörsheimer, Ch. Bosshard, and P. Günter, “Phase-matched second-harmonic generation in χ(2) inverted Langmuir–Blodgett waveguide structures,” Electron. Lett. 29, 2033–2034 (1993).
    [CrossRef]
  15. T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
    [CrossRef]
  16. W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett 70, 3347–3349 (1997).
    [CrossRef]
  17. S. Bauer-Gogonea, S. Bauer, W. Wirges, and R. Gerhard-Multhaupt, “Preparation and pyroelectrical investigation of bimorph polymer layers,” Ann. Phys. (Leipzig) 4, 355–366 (1995).
    [CrossRef]
  18. M. Ahlheim and F. Lehr, “Electro-optically active polymers. Nonlinear optical polymers prepared from maleic anhydride copolymers by polymer analogous reaction,” Macromol. Chem. Phys. 195, 361–373 (1994).
    [CrossRef]
  19. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
    [CrossRef]
  20. J. S. Schildkraut, “Determination of the electro-optic coefficient of a poled polymer film,” Appl. Opt. 29, 2839–2841 (1990).
    [CrossRef] [PubMed]
  21. C. Dinger, S. Yilmaz, W. Brinker, W. Wirges, S. Bauer-Gogonea, S. Bauer, and R. Gerhard-Multhaupt, “Ellipsometry and Michelson interferometry for fixed- and variable-frequency electro-optical measurements on poled poly mers,” Pure Appl. Opt. 5, 561–567 (1996).
    [CrossRef]
  22. S. Aramaki, “Dynamic electro-optic effect induced by chromophore motion in poling process,” Jpn. J. Appl. Phys. 34, L47–L50 (1995).
    [CrossRef]
  23. Sandalphon, B. Kippelen, K. Meerholz, and N. Peyghambarian, “Ellipsometric measurements of poling birefringence, the Pockels effect and the Kerr effect in high performance photorefractive polymer composites,” Appl. Opt. 35, 2346–2354 (1996).
    [CrossRef]
  24. S. Bauer, “Poled polymers for sensors and photonic applications,” J. Appl. Phys. Appl. Phys. Rev. 80, 5531–5558 (1996).
    [CrossRef]
  25. S. Bauer-Gogonea and R. Gerhard-Multhaupt, “Nonlinear optical polymer electrets. Current practice,” IEEE Trans. Dielectr. Electr. Insul. 3, 677–705 (1996).
    [CrossRef]
  26. V. Mahal, A. Arie, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched frequency doubling in a waveguide of a 1560-nm diode laser and locking to the rubidium D2 absorption lines,” Opt. Lett. 21, 1217–1219 (1996).
    [CrossRef] [PubMed]
  27. For example, M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second-harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
    [CrossRef]

1997 (1)

W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett 70, 3347–3349 (1997).
[CrossRef]

1996 (10)

S. Bauer, “Poled polymers for sensors and photonic applications,” J. Appl. Phys. Appl. Phys. Rev. 80, 5531–5558 (1996).
[CrossRef]

S. Bauer-Gogonea and R. Gerhard-Multhaupt, “Nonlinear optical polymer electrets. Current practice,” IEEE Trans. Dielectr. Electr. Insul. 3, 677–705 (1996).
[CrossRef]

M. Jäger, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Möhlmann, “Comparison of quasi-phase-matching geometries for second harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

M. Jäger, G. I. Stegeman, G. R. Möhlmann, M. C. Flipse, and M. B. J. Diemeer, “Second harmonic generation in polymeric channel waveguides using modal dispersion,” Electron. Lett. 32, 2009–2010 (1996).
[CrossRef]

M. Jäger, G. I. Stegeman, M. C. Flipse, M. B. J. Diemeer, and G. R. Möhlmann, “Modal dispersion phase matching over 7 mm length in overdamped polymeric channel waveguides,” Appl. Phys. Lett. 69, 4139–4141 (1996).
[CrossRef]

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[CrossRef]

A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second-harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

C. Dinger, S. Yilmaz, W. Brinker, W. Wirges, S. Bauer-Gogonea, S. Bauer, and R. Gerhard-Multhaupt, “Ellipsometry and Michelson interferometry for fixed- and variable-frequency electro-optical measurements on poled poly mers,” Pure Appl. Opt. 5, 561–567 (1996).
[CrossRef]

V. Mahal, A. Arie, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched frequency doubling in a waveguide of a 1560-nm diode laser and locking to the rubidium D2 absorption lines,” Opt. Lett. 21, 1217–1219 (1996).
[CrossRef] [PubMed]

Sandalphon, B. Kippelen, K. Meerholz, and N. Peyghambarian, “Ellipsometric measurements of poling birefringence, the Pockels effect and the Kerr effect in high performance photorefractive polymer composites,” Appl. Opt. 35, 2346–2354 (1996).
[CrossRef]

1995 (4)

S. Aramaki, “Dynamic electro-optic effect induced by chromophore motion in poling process,” Jpn. J. Appl. Phys. 34, L47–L50 (1995).
[CrossRef]

M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995).
[CrossRef] [PubMed]

T. C. Kowalczyk, K. D. Singer, and P. A. Cahill, “Anomalous-dispersion phase-matched second-harmonic generation in a polymer waveguide,” Opt. Lett. 20, 2273–2275 (1995).
[CrossRef] [PubMed]

S. Bauer-Gogonea, S. Bauer, W. Wirges, and R. Gerhard-Multhaupt, “Preparation and pyroelectrical investigation of bimorph polymer layers,” Ann. Phys. (Leipzig) 4, 355–366 (1995).
[CrossRef]

1994 (4)

M. Ahlheim and F. Lehr, “Electro-optically active polymers. Nonlinear optical polymers prepared from maleic anhydride copolymers by polymer analogous reaction,” Macromol. Chem. Phys. 195, 361–373 (1994).
[CrossRef]

For example, M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second-harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

K. Clays, J. S. Schildkraut, and D. J. Williams, “Phase-matched second-harmonic generation in a four-layered polymeric waveguide,” J. Opt. Soc. Am. B 11, 655–664 (1994).
[CrossRef]

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[CrossRef]

1993 (2)

Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

M. Küpfer, M. Flörsheimer, Ch. Bosshard, and P. Günter, “Phase-matched second-harmonic generation in χ(2) inverted Langmuir–Blodgett waveguide structures,” Electron. Lett. 29, 2033–2034 (1993).
[CrossRef]

1990 (3)

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[CrossRef]

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

J. S. Schildkraut, “Determination of the electro-optic coefficient of a poled polymer film,” Appl. Opt. 29, 2839–2841 (1990).
[CrossRef] [PubMed]

1978 (1)

Ahlheim, M.

W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett 70, 3347–3349 (1997).
[CrossRef]

M. Ahlheim and F. Lehr, “Electro-optically active polymers. Nonlinear optical polymers prepared from maleic anhydride copolymers by polymer analogous reaction,” Macromol. Chem. Phys. 195, 361–373 (1994).
[CrossRef]

Aramaki, S.

S. Aramaki, “Dynamic electro-optic effect induced by chromophore motion in poling process,” Jpn. J. Appl. Phys. 34, L47–L50 (1995).
[CrossRef]

Arbore, M. A.

Arie, A.

Armstrong, N. J.

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[CrossRef]

Bauer, S.

W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett 70, 3347–3349 (1997).
[CrossRef]

S. Bauer, “Poled polymers for sensors and photonic applications,” J. Appl. Phys. Appl. Phys. Rev. 80, 5531–5558 (1996).
[CrossRef]

M. Jäger, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Möhlmann, “Comparison of quasi-phase-matching geometries for second harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

C. Dinger, S. Yilmaz, W. Brinker, W. Wirges, S. Bauer-Gogonea, S. Bauer, and R. Gerhard-Multhaupt, “Ellipsometry and Michelson interferometry for fixed- and variable-frequency electro-optical measurements on poled poly mers,” Pure Appl. Opt. 5, 561–567 (1996).
[CrossRef]

S. Bauer-Gogonea, S. Bauer, W. Wirges, and R. Gerhard-Multhaupt, “Preparation and pyroelectrical investigation of bimorph polymer layers,” Ann. Phys. (Leipzig) 4, 355–366 (1995).
[CrossRef]

Bauer-Gogonea, S.

W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett 70, 3347–3349 (1997).
[CrossRef]

C. Dinger, S. Yilmaz, W. Brinker, W. Wirges, S. Bauer-Gogonea, S. Bauer, and R. Gerhard-Multhaupt, “Ellipsometry and Michelson interferometry for fixed- and variable-frequency electro-optical measurements on poled poly mers,” Pure Appl. Opt. 5, 561–567 (1996).
[CrossRef]

S. Bauer-Gogonea and R. Gerhard-Multhaupt, “Nonlinear optical polymer electrets. Current practice,” IEEE Trans. Dielectr. Electr. Insul. 3, 677–705 (1996).
[CrossRef]

S. Bauer-Gogonea, S. Bauer, W. Wirges, and R. Gerhard-Multhaupt, “Preparation and pyroelectrical investigation of bimorph polymer layers,” Ann. Phys. (Leipzig) 4, 355–366 (1995).
[CrossRef]

Bortz, M. L.

M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995).
[CrossRef] [PubMed]

For example, M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second-harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

Bosshard, Ch.

M. Küpfer, M. Flörsheimer, Ch. Bosshard, and P. Günter, “Phase-matched second-harmonic generation in χ(2) inverted Langmuir–Blodgett waveguide structures,” Electron. Lett. 29, 2033–2034 (1993).
[CrossRef]

Brinker, W.

W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett 70, 3347–3349 (1997).
[CrossRef]

M. Jäger, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Möhlmann, “Comparison of quasi-phase-matching geometries for second harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

C. Dinger, S. Yilmaz, W. Brinker, W. Wirges, S. Bauer-Gogonea, S. Bauer, and R. Gerhard-Multhaupt, “Ellipsometry and Michelson interferometry for fixed- and variable-frequency electro-optical measurements on poled poly mers,” Pure Appl. Opt. 5, 561–567 (1996).
[CrossRef]

Cahill, P. A.

Clays, K.

Diemeer, M.

W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett 70, 3347–3349 (1997).
[CrossRef]

A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second-harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

Diemeer, M. B. J.

M. Jäger, G. I. Stegeman, M. C. Flipse, M. B. J. Diemeer, and G. R. Möhlmann, “Modal dispersion phase matching over 7 mm length in overdamped polymeric channel waveguides,” Appl. Phys. Lett. 69, 4139–4141 (1996).
[CrossRef]

M. Jäger, G. I. Stegeman, G. R. Möhlmann, M. C. Flipse, and M. B. J. Diemeer, “Second harmonic generation in polymeric channel waveguides using modal dispersion,” Electron. Lett. 32, 2009–2010 (1996).
[CrossRef]

Dinger, C.

C. Dinger, S. Yilmaz, W. Brinker, W. Wirges, S. Bauer-Gogonea, S. Bauer, and R. Gerhard-Multhaupt, “Ellipsometry and Michelson interferometry for fixed- and variable-frequency electro-optical measurements on poled poly mers,” Pure Appl. Opt. 5, 561–567 (1996).
[CrossRef]

Ezenyilimba, M. C.

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[CrossRef]

Fejer, M. M.

Feuer, B.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[CrossRef]

Field, S. J.

For example, M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second-harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

Flipse, M. C.

W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett 70, 3347–3349 (1997).
[CrossRef]

M. Jäger, G. I. Stegeman, G. R. Möhlmann, M. C. Flipse, and M. B. J. Diemeer, “Second harmonic generation in polymeric channel waveguides using modal dispersion,” Electron. Lett. 32, 2009–2010 (1996).
[CrossRef]

M. Jäger, G. I. Stegeman, M. C. Flipse, M. B. J. Diemeer, and G. R. Möhlmann, “Modal dispersion phase matching over 7 mm length in overdamped polymeric channel waveguides,” Appl. Phys. Lett. 69, 4139–4141 (1996).
[CrossRef]

A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second-harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

Flörsheimer, M.

M. Küpfer, M. Flörsheimer, Ch. Bosshard, and P. Günter, “Phase-matched second-harmonic generation in χ(2) inverted Langmuir–Blodgett waveguide structures,” Electron. Lett. 29, 2033–2034 (1993).
[CrossRef]

Gerhard-Multhaupt, R.

S. Bauer-Gogonea and R. Gerhard-Multhaupt, “Nonlinear optical polymer electrets. Current practice,” IEEE Trans. Dielectr. Electr. Insul. 3, 677–705 (1996).
[CrossRef]

C. Dinger, S. Yilmaz, W. Brinker, W. Wirges, S. Bauer-Gogonea, S. Bauer, and R. Gerhard-Multhaupt, “Ellipsometry and Michelson interferometry for fixed- and variable-frequency electro-optical measurements on poled poly mers,” Pure Appl. Opt. 5, 561–567 (1996).
[CrossRef]

S. Bauer-Gogonea, S. Bauer, W. Wirges, and R. Gerhard-Multhaupt, “Preparation and pyroelectrical investigation of bimorph polymer layers,” Ann. Phys. (Leipzig) 4, 355–366 (1995).
[CrossRef]

Günter, P.

M. Küpfer, M. Flörsheimer, Ch. Bosshard, and P. Günter, “Phase-matched second-harmonic generation in χ(2) inverted Langmuir–Blodgett waveguide structures,” Electron. Lett. 29, 2033–2034 (1993).
[CrossRef]

Haas, D.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[CrossRef]

Hagan, D. J.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[CrossRef]

Horsthuis, W. H. G.

M. Jäger, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Möhlmann, “Comparison of quasi-phase-matching geometries for second harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

Inaba, H.

Ito, H.

Jäger, M.

W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett 70, 3347–3349 (1997).
[CrossRef]

M. Jäger, G. I. Stegeman, G. R. Möhlmann, M. C. Flipse, and M. B. J. Diemeer, “Second harmonic generation in polymeric channel waveguides using modal dispersion,” Electron. Lett. 32, 2009–2010 (1996).
[CrossRef]

M. Jäger, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Möhlmann, “Comparison of quasi-phase-matching geometries for second harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

M. Jäger, G. I. Stegeman, M. C. Flipse, M. B. J. Diemeer, and G. R. Möhlmann, “Modal dispersion phase matching over 7 mm length in overdamped polymeric channel waveguides,” Appl. Phys. Lett. 69, 4139–4141 (1996).
[CrossRef]

A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second-harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

Karim, D.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[CrossRef]

Kawahara, M.

Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

Khanarian, G.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[CrossRef]

Kippelen, B.

Kowalczyk, T. C.

Küpfer, M.

M. Küpfer, M. Flörsheimer, Ch. Bosshard, and P. Günter, “Phase-matched second-harmonic generation in χ(2) inverted Langmuir–Blodgett waveguide structures,” Electron. Lett. 29, 2033–2034 (1993).
[CrossRef]

Lehr, F.

W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett 70, 3347–3349 (1997).
[CrossRef]

M. Ahlheim and F. Lehr, “Electro-optically active polymers. Nonlinear optical polymers prepared from maleic anhydride copolymers by polymer analogous reaction,” Macromol. Chem. Phys. 195, 361–373 (1994).
[CrossRef]

Mahal, V.

Man, H. T.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

Meerholz, K.

Möhlmann, G. R.

M. Jäger, G. I. Stegeman, M. C. Flipse, M. B. J. Diemeer, and G. R. Möhlmann, “Modal dispersion phase matching over 7 mm length in overdamped polymeric channel waveguides,” Appl. Phys. Lett. 69, 4139–4141 (1996).
[CrossRef]

M. Jäger, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Möhlmann, “Comparison of quasi-phase-matching geometries for second harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

M. Jäger, G. I. Stegeman, G. R. Möhlmann, M. C. Flipse, and M. B. J. Diemeer, “Second harmonic generation in polymeric channel waveguides using modal dispersion,” Electron. Lett. 32, 2009–2010 (1996).
[CrossRef]

Motschmann, H. R.

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[CrossRef]

Nam, D. W.

For example, M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second-harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

Norwood, R. A.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[CrossRef]

Okayama, H.

Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

Otomo, A.

A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second-harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

Penner, T. L.

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[CrossRef]

Peyghambarian, N.

Sandalphon,

Schildkraut, J. S.

Shinozaki, K.

Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

Singer, K. D.

Stähelin, M.

W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett 70, 3347–3349 (1997).
[CrossRef]

Stegeman, G. I.

W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett 70, 3347–3349 (1997).
[CrossRef]

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[CrossRef]

M. Jäger, G. I. Stegeman, G. R. Möhlmann, M. C. Flipse, and M. B. J. Diemeer, “Second harmonic generation in polymeric channel waveguides using modal dispersion,” Electron. Lett. 32, 2009–2010 (1996).
[CrossRef]

A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second-harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

M. Jäger, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Möhlmann, “Comparison of quasi-phase-matching geometries for second harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

M. Jäger, G. I. Stegeman, M. C. Flipse, M. B. J. Diemeer, and G. R. Möhlmann, “Modal dispersion phase matching over 7 mm length in overdamped polymeric channel waveguides,” Appl. Phys. Lett. 69, 4139–4141 (1996).
[CrossRef]

Teng, C. C.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

Torner, L.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[CrossRef]

Waarts, R. G.

For example, M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second-harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

Watanabe, K.

Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

Welch, D. F.

For example, M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second-harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

Williams, D. J.

K. Clays, J. S. Schildkraut, and D. J. Williams, “Phase-matched second-harmonic generation in a four-layered polymeric waveguide,” J. Opt. Soc. Am. B 11, 655–664 (1994).
[CrossRef]

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[CrossRef]

Wirges, W.

W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett 70, 3347–3349 (1997).
[CrossRef]

C. Dinger, S. Yilmaz, W. Brinker, W. Wirges, S. Bauer-Gogonea, S. Bauer, and R. Gerhard-Multhaupt, “Ellipsometry and Michelson interferometry for fixed- and variable-frequency electro-optical measurements on poled poly mers,” Pure Appl. Opt. 5, 561–567 (1996).
[CrossRef]

S. Bauer-Gogonea, S. Bauer, W. Wirges, and R. Gerhard-Multhaupt, “Preparation and pyroelectrical investigation of bimorph polymer layers,” Ann. Phys. (Leipzig) 4, 355–366 (1995).
[CrossRef]

Xu, Q.

Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

Yilmaz, S.

W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett 70, 3347–3349 (1997).
[CrossRef]

C. Dinger, S. Yilmaz, W. Brinker, W. Wirges, S. Bauer-Gogonea, S. Bauer, and R. Gerhard-Multhaupt, “Ellipsometry and Michelson interferometry for fixed- and variable-frequency electro-optical measurements on poled poly mers,” Pure Appl. Opt. 5, 561–567 (1996).
[CrossRef]

M. Jäger, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Möhlmann, “Comparison of quasi-phase-matching geometries for second harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

Zysset, B.

W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett 70, 3347–3349 (1997).
[CrossRef]

Ann. Phys. (Leipzig) (1)

S. Bauer-Gogonea, S. Bauer, W. Wirges, and R. Gerhard-Multhaupt, “Preparation and pyroelectrical investigation of bimorph polymer layers,” Ann. Phys. (Leipzig) 4, 355–366 (1995).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett (1)

W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett 70, 3347–3349 (1997).
[CrossRef]

Appl. Phys. Lett. (6)

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second-harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[CrossRef]

M. Jäger, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Möhlmann, “Comparison of quasi-phase-matching geometries for second harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

M. Jäger, G. I. Stegeman, M. C. Flipse, M. B. J. Diemeer, and G. R. Möhlmann, “Modal dispersion phase matching over 7 mm length in overdamped polymeric channel waveguides,” Appl. Phys. Lett. 69, 4139–4141 (1996).
[CrossRef]

Electron. Lett. (2)

M. Küpfer, M. Flörsheimer, Ch. Bosshard, and P. Günter, “Phase-matched second-harmonic generation in χ(2) inverted Langmuir–Blodgett waveguide structures,” Electron. Lett. 29, 2033–2034 (1993).
[CrossRef]

M. Jäger, G. I. Stegeman, G. R. Möhlmann, M. C. Flipse, and M. B. J. Diemeer, “Second harmonic generation in polymeric channel waveguides using modal dispersion,” Electron. Lett. 32, 2009–2010 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

For example, M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second-harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

IEEE Trans. Dielectr. Electr. Insul. (1)

S. Bauer-Gogonea and R. Gerhard-Multhaupt, “Nonlinear optical polymer electrets. Current practice,” IEEE Trans. Dielectr. Electr. Insul. 3, 677–705 (1996).
[CrossRef]

J. Appl. Phys. Appl. Phys. Rev. (1)

S. Bauer, “Poled polymers for sensors and photonic applications,” J. Appl. Phys. Appl. Phys. Rev. 80, 5531–5558 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

S. Aramaki, “Dynamic electro-optic effect induced by chromophore motion in poling process,” Jpn. J. Appl. Phys. 34, L47–L50 (1995).
[CrossRef]

Macromol. Chem. Phys. (1)

M. Ahlheim and F. Lehr, “Electro-optically active polymers. Nonlinear optical polymers prepared from maleic anhydride copolymers by polymer analogous reaction,” Macromol. Chem. Phys. 195, 361–373 (1994).
[CrossRef]

Nature (1)

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[CrossRef]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[CrossRef]

Pure Appl. Opt. (1)

C. Dinger, S. Yilmaz, W. Brinker, W. Wirges, S. Bauer-Gogonea, S. Bauer, and R. Gerhard-Multhaupt, “Ellipsometry and Michelson interferometry for fixed- and variable-frequency electro-optical measurements on poled poly mers,” Pure Appl. Opt. 5, 561–567 (1996).
[CrossRef]

Other (2)

S. Tomaru, T. Watanabe, M. Hikita, M. Amano, Y. Shuto, I. Yokohama, T. Kaino, and M. Asobe, “Quasi-phase-matched second harmonic generation in a polymer waveguide with a periodic poled structure,” Appl. Phys. Lett. 68, 1760–1762 (1996); Y. Shuto, T. Watanabe, S. Tomaru, I. Yokohama, M. Hikita, and M. Amano, “Quasi-phase-matched secondharmonic generation in diazo-dye-substituted polymer channel waveguides,” IEEE J. Quantum Electron. 33, 349–357 (1997).
[CrossRef]

M. Flörsheimer, M. Küpfer, Ch. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. Commun. 4, 795–798 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Cross section of the waveguides with inverted layers for transverse magnetic TM0ωTM12ω (left) and TM0ωTM22ω (right) MDPM SHG.

Fig. 2
Fig. 2

In situ EO response of a TM0ωTM12ω mode conversion waveguide during the two-step poling process. Top, temperature profile; middle, applied dc poling and ac probing field; bottom, measured EO signal. The small EO response at the end of the poling process indicates a nearly balanced inverted-layer structure.

Fig. 3
Fig. 3

EO thermal analysis of an inverted-layer structure. The EO signal is recorded while the polymer is heated at a rate of 4°/min. The EO signal first increases, when the low-Tg dipoles relax and finally vanishes when all dipoles are relaxed.

Fig. 4
Fig. 4

Pyroelectric thermal analysis of an inverted-layer structure. Same heating rate as in EOTA. Right, thermal excitation performed by absorption of intensity-modulated light within the top electrode and within the electrode between the polymer and the glass substrate. The modulation frequency is chosen such that only a small fraction of the polymer is periodically heated. Left: The different sign and the relaxation of the pyroelectric signal in the vicinity of the two glass transitions clearly demonstrate the preparation of inverted layers.

Fig. 5
Fig. 5

SHG thermal analysis. Same heating rate as in EOTA. Right: SHG light is transmitted only from the shaded areas in the two polymer layers and thus arises solely from the high-Tg polymer (top) and the low-Tg polymer (bottom). Left: The SHG signal drops, as expected in the vicinity of the two glass transitions. For clarity, one signal trace is shown with a negative sign.  

Fig. 6
Fig. 6

Power loss coefficients of the waveguides for the TM00ωTM202ω conversion (a) in the fundamental region (αω) as determined from throughput measurements with a color-center laser and (b) in the SHG region (α2ω) as determined from throughput measurements with a Ti:sapphire laser (open circles). The filled circle corresponds to the SHG loss calculated from the SHG acceptance bandwidth.

Fig. 7
Fig. 7

SHG (a) efficiency and (b) figure of merit: experimental data and theoretical curves for lossy and lossless cases.

Fig. 8
Fig. 8

SHG tuning curves for 0.1-cm- and 1.0-cm-long waveguides: experimental data and theoretical curves (including refractive index and loss dispersion). The good agreement between theory and experiment suggests that the bandwidth for these waveguides is limited mainly by waveguide loss rather than by waveguide nonuniformities.

Fig. 9
Fig. 9

SHG acceptance bandwidth data for waveguides of various lengths and theoretical dependence for the lossy and the lossless cases. The scatter of the data is attributed to nonuniformities in the waveguides.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S=t0td33(2)(z)[Ezm,ω(z)]2Ezn,2ω(z)dz,
η=2η0 exp[-(αω+α2ω/2)L] cosh(ΔαL)-cos(ΔβL)(Δα)2+(Δβ)2,

Metrics