Abstract

By irradiation of a UV source through a metallic mask with a chirped periodic or periodic structure and a metallic wire onto vinylidene cyanide/vinyl acetate copolymer, the Čerenkov-radiative second-harmonic generation has been efficiently enhanced, with the channel waveguide having a chirped periodic nonlinear optical susceptibility χ(2) corrugation. By use of an ArF 193-nm laser close to an inherent absorption line of the copolymer as the UV source, not only a nonlinear optical χ(2) corrugation with the average period Λs0 =20 μm and a chirping index ϕm9 but also a channel guide 60 μm wide were induced. The enhancement factor of the Čerenkovian second-harmonic-generation power achieved was 7.4 times that of a uniform nonlinear optical χ(2) scheme. This simple UV irradiation method leads to almost the same effect as is obtained by a contact electrode method, showing its feasibility for the Čerenkovian second-harmonic-generation scheme.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For example, see M. J. Li, M. De Micheli, Q. He, and D. B. Ostrowsky, “Čerenkov configuration second harmonic generation in proton-exchanged lithium niobate guides,” IEEE J. Quantum Electron. 26, 1384–1393 (1990).
    [CrossRef]
  2. Y. Azumai, I. Seo, and H. Sato, “Enhanced second-harmonic generation with Čerenkov radiation scheme in organic film slab guide at IR lines,” IEEE J. Quantum Electron. 28, 231–238 (1992).
    [CrossRef]
  3. K. Thyagarajan, V. Rastogi, M. R. Shenoy, D. B. Ostrowsky, M. De Micheli, and P. Baldi, “Modeling of parametric amplification in the Čerenkov-idler configuration in planar waveguides,” Opt. Lett. 21, 1631–1633 (1996).
    [CrossRef] [PubMed]
  4. Y. Azumai and H. Sato, “Improvement of the Čerenkov radiative second harmonic generation in the slab waveguide with a periodic nonlinear optical susceptibility,” Jpn. J. Appl. Phys. 32, 800–806 (1993).
    [CrossRef]
  5. H. Sato and Y. Azumai, “Čerenkov radiative second-harmonic generation enhancement with a periodically corrugated nonlinear susceptibility in a slab waveguide,” J. Opt. Soc. Am. B 10, 894–897 (1993).
    [CrossRef]
  6. H. Sato, Y. Azumai, and H. Nozawa, “Effect of chirped nonlinear optical susceptibility corrugation on the Čerenkovian second-harmonic power in a slab waveguide,” Opt. Lett. 19, 93–95 (1994).
    [CrossRef]
  7. H. Sato, H. Nozawa, Y. Azumai, and I. Seo, “Demonstration of enhanced Čerenkov-radiative SHG with chirped nonlinear optical susceptibility in organic polymer waveguide,” Nonlinear Opt. 10, 319–330 (1995).
  8. It is not necessary that the guide be asymmetric. The asymmetry is due only to a technical problem in inducing a uniform poling with the remaining lower metallic electrode.
  9. H. Taub and D. L. Schilling, Principles of Communication Systems (McGraw-Hill, New York, 1971), p. 123.
  10. H. Sato and Y. Azumai, “Comparison of enhanced Čerenkov-radiative SHG power with various nonlinear optical susceptibility structures in waveguide,” in Nonlinear Optical Properties of Organic Materials VII, G. R. Möhlmann, ed., Proc. SPIE 2285, 272–281 (1994).
    [CrossRef]

1996 (1)

1995 (1)

H. Sato, H. Nozawa, Y. Azumai, and I. Seo, “Demonstration of enhanced Čerenkov-radiative SHG with chirped nonlinear optical susceptibility in organic polymer waveguide,” Nonlinear Opt. 10, 319–330 (1995).

1994 (2)

H. Sato and Y. Azumai, “Comparison of enhanced Čerenkov-radiative SHG power with various nonlinear optical susceptibility structures in waveguide,” in Nonlinear Optical Properties of Organic Materials VII, G. R. Möhlmann, ed., Proc. SPIE 2285, 272–281 (1994).
[CrossRef]

H. Sato, Y. Azumai, and H. Nozawa, “Effect of chirped nonlinear optical susceptibility corrugation on the Čerenkovian second-harmonic power in a slab waveguide,” Opt. Lett. 19, 93–95 (1994).
[CrossRef]

1993 (2)

Y. Azumai and H. Sato, “Improvement of the Čerenkov radiative second harmonic generation in the slab waveguide with a periodic nonlinear optical susceptibility,” Jpn. J. Appl. Phys. 32, 800–806 (1993).
[CrossRef]

H. Sato and Y. Azumai, “Čerenkov radiative second-harmonic generation enhancement with a periodically corrugated nonlinear susceptibility in a slab waveguide,” J. Opt. Soc. Am. B 10, 894–897 (1993).
[CrossRef]

1992 (1)

Y. Azumai, I. Seo, and H. Sato, “Enhanced second-harmonic generation with Čerenkov radiation scheme in organic film slab guide at IR lines,” IEEE J. Quantum Electron. 28, 231–238 (1992).
[CrossRef]

1990 (1)

For example, see M. J. Li, M. De Micheli, Q. He, and D. B. Ostrowsky, “Čerenkov configuration second harmonic generation in proton-exchanged lithium niobate guides,” IEEE J. Quantum Electron. 26, 1384–1393 (1990).
[CrossRef]

Azumai, Y.

H. Sato, H. Nozawa, Y. Azumai, and I. Seo, “Demonstration of enhanced Čerenkov-radiative SHG with chirped nonlinear optical susceptibility in organic polymer waveguide,” Nonlinear Opt. 10, 319–330 (1995).

H. Sato, Y. Azumai, and H. Nozawa, “Effect of chirped nonlinear optical susceptibility corrugation on the Čerenkovian second-harmonic power in a slab waveguide,” Opt. Lett. 19, 93–95 (1994).
[CrossRef]

H. Sato and Y. Azumai, “Comparison of enhanced Čerenkov-radiative SHG power with various nonlinear optical susceptibility structures in waveguide,” in Nonlinear Optical Properties of Organic Materials VII, G. R. Möhlmann, ed., Proc. SPIE 2285, 272–281 (1994).
[CrossRef]

H. Sato and Y. Azumai, “Čerenkov radiative second-harmonic generation enhancement with a periodically corrugated nonlinear susceptibility in a slab waveguide,” J. Opt. Soc. Am. B 10, 894–897 (1993).
[CrossRef]

Y. Azumai and H. Sato, “Improvement of the Čerenkov radiative second harmonic generation in the slab waveguide with a periodic nonlinear optical susceptibility,” Jpn. J. Appl. Phys. 32, 800–806 (1993).
[CrossRef]

Y. Azumai, I. Seo, and H. Sato, “Enhanced second-harmonic generation with Čerenkov radiation scheme in organic film slab guide at IR lines,” IEEE J. Quantum Electron. 28, 231–238 (1992).
[CrossRef]

Baldi, P.

De Micheli, M.

K. Thyagarajan, V. Rastogi, M. R. Shenoy, D. B. Ostrowsky, M. De Micheli, and P. Baldi, “Modeling of parametric amplification in the Čerenkov-idler configuration in planar waveguides,” Opt. Lett. 21, 1631–1633 (1996).
[CrossRef] [PubMed]

For example, see M. J. Li, M. De Micheli, Q. He, and D. B. Ostrowsky, “Čerenkov configuration second harmonic generation in proton-exchanged lithium niobate guides,” IEEE J. Quantum Electron. 26, 1384–1393 (1990).
[CrossRef]

He, Q.

For example, see M. J. Li, M. De Micheli, Q. He, and D. B. Ostrowsky, “Čerenkov configuration second harmonic generation in proton-exchanged lithium niobate guides,” IEEE J. Quantum Electron. 26, 1384–1393 (1990).
[CrossRef]

Li, M. J.

For example, see M. J. Li, M. De Micheli, Q. He, and D. B. Ostrowsky, “Čerenkov configuration second harmonic generation in proton-exchanged lithium niobate guides,” IEEE J. Quantum Electron. 26, 1384–1393 (1990).
[CrossRef]

Nozawa, H.

H. Sato, H. Nozawa, Y. Azumai, and I. Seo, “Demonstration of enhanced Čerenkov-radiative SHG with chirped nonlinear optical susceptibility in organic polymer waveguide,” Nonlinear Opt. 10, 319–330 (1995).

H. Sato, Y. Azumai, and H. Nozawa, “Effect of chirped nonlinear optical susceptibility corrugation on the Čerenkovian second-harmonic power in a slab waveguide,” Opt. Lett. 19, 93–95 (1994).
[CrossRef]

Ostrowsky, D. B.

K. Thyagarajan, V. Rastogi, M. R. Shenoy, D. B. Ostrowsky, M. De Micheli, and P. Baldi, “Modeling of parametric amplification in the Čerenkov-idler configuration in planar waveguides,” Opt. Lett. 21, 1631–1633 (1996).
[CrossRef] [PubMed]

For example, see M. J. Li, M. De Micheli, Q. He, and D. B. Ostrowsky, “Čerenkov configuration second harmonic generation in proton-exchanged lithium niobate guides,” IEEE J. Quantum Electron. 26, 1384–1393 (1990).
[CrossRef]

Rastogi, V.

Sato, H.

H. Sato, H. Nozawa, Y. Azumai, and I. Seo, “Demonstration of enhanced Čerenkov-radiative SHG with chirped nonlinear optical susceptibility in organic polymer waveguide,” Nonlinear Opt. 10, 319–330 (1995).

H. Sato and Y. Azumai, “Comparison of enhanced Čerenkov-radiative SHG power with various nonlinear optical susceptibility structures in waveguide,” in Nonlinear Optical Properties of Organic Materials VII, G. R. Möhlmann, ed., Proc. SPIE 2285, 272–281 (1994).
[CrossRef]

H. Sato, Y. Azumai, and H. Nozawa, “Effect of chirped nonlinear optical susceptibility corrugation on the Čerenkovian second-harmonic power in a slab waveguide,” Opt. Lett. 19, 93–95 (1994).
[CrossRef]

H. Sato and Y. Azumai, “Čerenkov radiative second-harmonic generation enhancement with a periodically corrugated nonlinear susceptibility in a slab waveguide,” J. Opt. Soc. Am. B 10, 894–897 (1993).
[CrossRef]

Y. Azumai and H. Sato, “Improvement of the Čerenkov radiative second harmonic generation in the slab waveguide with a periodic nonlinear optical susceptibility,” Jpn. J. Appl. Phys. 32, 800–806 (1993).
[CrossRef]

Y. Azumai, I. Seo, and H. Sato, “Enhanced second-harmonic generation with Čerenkov radiation scheme in organic film slab guide at IR lines,” IEEE J. Quantum Electron. 28, 231–238 (1992).
[CrossRef]

Seo, I.

H. Sato, H. Nozawa, Y. Azumai, and I. Seo, “Demonstration of enhanced Čerenkov-radiative SHG with chirped nonlinear optical susceptibility in organic polymer waveguide,” Nonlinear Opt. 10, 319–330 (1995).

Y. Azumai, I. Seo, and H. Sato, “Enhanced second-harmonic generation with Čerenkov radiation scheme in organic film slab guide at IR lines,” IEEE J. Quantum Electron. 28, 231–238 (1992).
[CrossRef]

Shenoy, M. R.

Thyagarajan, K.

IEEE J. Quantum Electron. (2)

For example, see M. J. Li, M. De Micheli, Q. He, and D. B. Ostrowsky, “Čerenkov configuration second harmonic generation in proton-exchanged lithium niobate guides,” IEEE J. Quantum Electron. 26, 1384–1393 (1990).
[CrossRef]

Y. Azumai, I. Seo, and H. Sato, “Enhanced second-harmonic generation with Čerenkov radiation scheme in organic film slab guide at IR lines,” IEEE J. Quantum Electron. 28, 231–238 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

Y. Azumai and H. Sato, “Improvement of the Čerenkov radiative second harmonic generation in the slab waveguide with a periodic nonlinear optical susceptibility,” Jpn. J. Appl. Phys. 32, 800–806 (1993).
[CrossRef]

Nonlinear Opt. (1)

H. Sato, H. Nozawa, Y. Azumai, and I. Seo, “Demonstration of enhanced Čerenkov-radiative SHG with chirped nonlinear optical susceptibility in organic polymer waveguide,” Nonlinear Opt. 10, 319–330 (1995).

Opt. Lett. (2)

Proc. SPIE (1)

H. Sato and Y. Azumai, “Comparison of enhanced Čerenkov-radiative SHG power with various nonlinear optical susceptibility structures in waveguide,” in Nonlinear Optical Properties of Organic Materials VII, G. R. Möhlmann, ed., Proc. SPIE 2285, 272–281 (1994).
[CrossRef]

Other (2)

It is not necessary that the guide be asymmetric. The asymmetry is due only to a technical problem in inducing a uniform poling with the remaining lower metallic electrode.

H. Taub and D. L. Schilling, Principles of Communication Systems (McGraw-Hill, New York, 1971), p. 123.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Theoretical model of slab guide with chirped periodic NLO χ(2) structure.

Fig. 2
Fig. 2

Phase-matching conditions of chirped NLO χ(2) structures for the Čerenkov-radiative angles, where β2ω=2βω, β2ω,p+=2βω±βs, with βs=βs0+pβm: p, -(ϕm+1) to (ϕm+1).

Fig. 3
Fig. 3

Three different NLO χ(2) structures and corresponding Čerenkov-radiative angles: (a) uniform NLO χ(2), (b) periodic NLO χ(2), and (c) chirped NLO χ(2) structures.

Fig. 4
Fig. 4

Dependence of NLO χ(2) on UV (193-nm) exposure time texp, where damage starts after more than 5 min of irradiation (pps, pulses per second).

Fig. 5
Fig. 5

Dependence of complex refractive index n˜=n+iα, i.e., refractive index n and extinction coefficient α, on UV exposure time texp: (a) refractive index, and (b) extinction coefficient.

Fig. 6
Fig. 6

Fabrication procedures of both NLO χ(2) structure and channel guide by UV irradiation.

Fig. 7
Fig. 7

Typical waveforms of both fundamental and SH beams obtained with (a) chirped and (b) uniformly periodic structures, where the upper and the lower traces in each of (a) and (b) are the fundamental and the SH waves with the vertical scales of 5 and 100 mV/division, respectively, with the common horizontal scale of 100 μs/division.

Fig. 8
Fig. 8

SHG power P2ω versus the square of the fundamental power Pω2 (a) for various NLO χ(2) structures and (b) for channel guide widths. PRD, periodic configuration; (UV), poling process by the UV irradiation method; CHP, chirped configuration; CH, channel guide; UNI, uniformly.  

Fig. 9
Fig. 9

EF as a function of channel guide width w, where the slab guide (w=) is assumed to be unity for normalization.

Fig. 10
Fig. 10

Comparison of SHG powers obtained by the UV irradiation scheme with those obtained by the electrical poling scheme. (EL), poling process by the contact electrode method.

Tables (1)

Tables Icon

Table 1 Comparison of SHG EF’s for Various NLO χ(2) Corrugations and Channel Guide Widths a

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

χ(2)(y)=χ0(2)[1+cos(βs0y+ϕm sin βmy)]
χ0(2)1+12 p=-(ϕm+1)ϕm+1Jp(ϕm)cos(βs0+pβm)y,
P2ω=L4ωμ0 β2ω|A˜u, 2ω|2 tan θc+p=-(ϕm+1)ϕm+1(β2ω,p+|A˜u,2ω,p+|2×tan θc,p++β2ω,p-|A˜u,2ω,p-|2 tan θc,p-)+p=-(ϕm+1)ϕm+1Re{A˜u,2ω*A˜u,2ω,p-×exp[i(β2ω-β2ω,p-)L](β2ω+β2ω,p-)tan θc-}+Re{A˜u,2ω,p+*A˜u,2ω exp[i(β2ω,p+-β2ω)L]×(β2ω,p++β2ω)tan θc,p+}+q=-(ϕm+1)ϕm+1 Re{A˜u,2ω,p+*A˜u,2ω,q-×exp[i(β2ω,p+-β2ω,q-)L]×(β2ω,p++β2ω,q-)tan θc,p+},
θc=cos-1β2ωk0,2ωnu,2ω,
θc,p±=cos-1β2ω,p±k0,2ωnu,2ω;
p rangesfrom-(ϕm+1) to (ϕm+1),
β2ω=2βω,
β2ω+=2βω+(βs0+pβm);
p rangesfrom -(ϕm+1)to(ϕm+1),
β2ω-=2βω-(βs0+pβm);
p rangesfrom -(ϕm+1)to(ϕm+1).
χ(2)(y)=2χ0(2).
P2ω(L)=(L/4ωμ0)β2ω|A˜u,2ω|2 tan θc,
θc=cos-1(β2ω/k0,2ωku,2ω).
χ(2)(y)=χ0(2)(1+cos βsy).
P2ω(L)=L4ωμ0 {β2ω|A˜u,2ω|2 tan θc+β2ω+|A˜u,2ω+|2 tan θc++β2ω-|A˜u,2ω-|2 tan θc-+Re[A˜u,2ω*A˜u,2ω- exp(iβsL)](β2ω+β2ω-)×tan θc+Re[A˜u,2ω+*A˜u,2ω exp(iβsL)]×(β2ω++β2ω)tan θc++Re[A˜u,2ω+*A˜u,2ω exp(i2βsL)]×(β2ω++β2ω-)tan θc+},
θc=cos-1(β2ω/β0,2ωnu,2ω),
θc+=cos-1(β2ω+/β0,2ωnu,2ω),
θc-=cos-1(β2ω-/β0,2ωnu,2ω).
EFuniform=1,
EFperiodic=1+(1+λ/2Λs) |A˜u,2ω+|2 tan θc+|A˜u,2ω|2 tan βc+(1-λ/2Λs) |A˜u,2ω-|2 tan θc-|A˜u,2ω|2 tan θc+,
EFchirped
=11+[1+(λ/2Λs0)-(λ/Λm)] |A˜u,2ω,-2+|2 tan θc,-2+|A˜u,2ω|2 tan θc+[1+(λ/2Λs0)-(λ/2Λm)] |A˜u,2ω,-1+|2 tan θc,-1+|A˜u,2ω|2 tan θc+[1+(λ/2Λs0)] |A˜u,2ω,0+|2 tan θc,0+|A˜u,2ω|2 tan θc+[1+(λ/2Λs0)+(λ/2Λm)] |A˜u,2ω,1+|2 tan θc,1+|A˜u,2ω|2 tan θc+[1+(λ/2Λs0)+(λ/Λm)] |A˜u,2ω,2+|2 tan θc,2+|A˜u,2ω|2 tan θc+ .
|A˜u,2ω|2|χ(2)|2(Ag,ω)4,
(Ag,ω)2PωwdeffPωwd.
P2ωwL|A˜u,2ω|2=|χ(2)|2LPω2/wd2.

Metrics