Abstract

We investigated efficient surface-emitting second-harmonic-generation devices in poled polymers, using a 4-dimethylamino-4-nitrostilbene side-chain polymer. The investigation included characterization of the linear and nonlinear optical properties of the polymer, design of efficient surface-emitting second-harmonic-generation devices based on poled polymers, development of an efficient in-plane poling technique, and demonstration of surface-emitting second-harmonic generation in poled polymers. As a result, strong field in-plane parallel poling was successfully performed with poling fields over 300 V/μm, which led to a large nonlinearity of 150 pm/V at 1064 nm (near resonance). A thick cover layer and a highly resistive substrate were found to be essential for efficient in-plane poling without breakdown at relatively small fields and significant charge injection. We achieved quasi-phase matching in the transverse direction by fabricating nonlinear–linear multilayer waveguides. Each layer had approximately a 150-nm thickness. The largest second-harmonic power conversion efficiency to date in the poled-polymer devices is 0.6%/W cm, which is comparable with those of semiconductor multilayer devices.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chaps. 6 and 7; R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), Chap. 2.
  2. C. J. van der Poel, J. D. Bierlein, J. B. Brown, and S. Colak, “Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
    [CrossRef]
  3. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  4. K. Yamamoto and K. Mizuuchi, “Blue-light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” IEEE Photonics Technol. Lett. 4, 435–437 (1992).
    [CrossRef]
  5. G. Khanarian and R. A. Norwood, “Efficient quasi phase matched second harmonic generation in a polymer waveguide,” in Nonlinear Optical Properties of Organic Materials III, G. Khanarian, ed., Proc. SPIE 1337, 44–52 (1990).
    [CrossRef]
  6. G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and E. Staring, “Poled polymer for frequency doubling of diode lasers,” in Nonlinear Optical Properties of Organic Materials III, G. Khanarian, ed., Proc. SPIE 1337, 35–43 (1990).
    [CrossRef]
  7. Ch. Bosshard, M. Flörsheimer, M. Küpfer, and P. Günter, “Cerenkov-type phase-matched second-harmonic generation in DCANP Langmuir–Blodgett film waveguides,” Opt. Commun. 85, 243–253 (1991).
    [CrossRef]
  8. Y. Azumai, I. Seo, and H. Sato, “Enhanced second-harmonic generation with Cerenkov radiation scheme in organic film slab-guide at IR lines,” IEEE J. Quantum Electron. 28, 231–238 (1992).
    [CrossRef]
  9. K. Clays, N. J. Armstrong, and T. L. Penner, “Blue and green Cerenkov-type second-harmonic generation in a polymeric Langmuir–Blodgett waveguide,” J. Opt. Soc. Am. B 10, 886–893 (1993).
    [CrossRef]
  10. R. Normandin and G. I. Stegeman, “Nondegenerate four-wave mixing in integrated optics,” Opt. Lett. 4, 58–59 (1979).
    [CrossRef] [PubMed]
  11. R. Normandin and G. I. Stegeman, “Picosecond signal processing with planar nonlinear integrated optics,” Appl. Phys. Lett. 36, 253–255 (1980).
    [CrossRef]
  12. R. Normandin and G. I. Stegeman, “A picosecond transient digitizer based on nonlinear integrated optics,” Appl. Phys. Lett. 40, 759–761 (1982).
    [CrossRef]
  13. R. Normandin, R. L. Williams, and F. Chatenoud, “Enhanced surface emitting waveguides for visible, monolithic semiconductor laser sources,” Electron. Lett. 26, 2088–2089 (1990); R. Normandin, S. Létourneau, F. Chatenoud, and R. L. Williams, “Monolithic, surface-emitting, semiconductor visible lasers and spectrometers for WDM fiber communication systems,” IEEE J. Quantum Electron. 27, 1520–1530 (1991).
    [CrossRef]
  14. C. T. J. Wreesmann, E. W. P. Erdhuisen, and D. J. Sikkema, “Polyurethanes prepared from non-linear optical active diols,” European patent EP 350112 (10 Jan. 1990); “Non-linear optical active diols and polyurethanes prepared therefrom,” U.S. patent 5001209 (19 March 1991); “Non-linear optical active diols and polyurethanes prepared therefrom,” Canadian patent CA 1332200 (27 Sept. 1994).
  15. P. J. Vella, R. Normandin, and G. I. Stegeman, “Enhanced second-harmonic generation by counter-propagating guided optical waves,” Appl. Phys. Lett. 38, 759–760 (1981).
    [CrossRef]
  16. M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency measurement for multichannel networks using sum-frequency generation in multilayer waveguides,” Electron. Lett. 29, 975–976 (1993).
    [CrossRef]
  17. M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency control for DWDM networks using sum-frequency generation in multilayer waveguides,” IEEE Photonics Technol. Lett. 6, 453–456 (1994).
    [CrossRef]
  18. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
    [CrossRef]
  19. M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. G. Higgins, and A. Dienes, “Second-harmonic generation and absorption studies of polymer-dye films oriented by corona-onset poling at elevated temperatures,” J. Opt. Soc. Am. B 6, 733–741 (1989).
    [CrossRef]
  20. W. H. G. Horsthuis, G. R. Möhlmann, and H. W. Mertens, “Nonlinear optical polymers: waveguide devices based on second order effects,” in Nonlinear Guided-Wave Phenomena, Vol. 15 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper MD1, pp. 70–73.
  21. J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, and R. Lytel, “Thermal stability of electro-optic response in poled polyimide systems,” Appl. Phys. Lett. 58, 225–227 (1991).
    [CrossRef]
  22. A. Nahata, J. Shan, J. T. Yardley, and C. Wu, “Electro-optic determination of the nonlinear-optical properties of a covalently functionalized Disperse Red 1 copolymer,” J. Opt. Soc. Am. B 10, 1553–1564 (1993).
    [CrossRef]
  23. A. Nahata, C. Wu, C. Knapp, V. Lu, J. Shan, and J. T. Yardley, “Thermally stable polyester polymers for second-order nonlinear optics,” Appl. Phys. Lett. 64, 3371–3373 (1994).
    [CrossRef]
  24. S. Yitzchaik, G. Berkovic, and V. Krongauz, “Charge injection asymmetry: a new route to strong optical nonlinearity in poled polymers,” J. Appl. Phys. 70, 3949–3951 (1991).
    [CrossRef]
  25. M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
    [CrossRef]
  26. G. R. Möhlmann, W. H. G. Horsthuis, C. P. J. M. van der Vorst, A. McDonach, M. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, P. Van Daele, E. Van Tomme, and R. Baets, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. SPIE 1147, 245–255 (1989).
    [CrossRef]
  27. A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
    [CrossRef]
  28. M. Abramowitz and I. E. Stegun, eds., Handbook of Mathematical Functions (U.S. Government Printing Office, Washington, D.C., 1972); E. Toussaere, “Polymeres electrooptiques pour l’optique nonlineaire: caracterisation optique et modeles satistiques,” Ph.D. dissertation (University of Paris, Paris, 1993).
  29. A. Otomo, “Second order optical nonlinearities and wave mixing devices in poled polymer waveguides,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 1995).
  30. B. J. Orr and J. F. Ward, “Perturbation theory of the nonlinear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
    [CrossRef]
  31. C. J. F. Böttcher, Theory of Electric Polarization, 2nd ed. (Elsevier, Amsterdam, 1973), Vol. 1, Chap. 5.
  32. P. M. Lindquist, S. Yitzchaik, T. Zhang, D. R. Kanis, M. A. Ratner, T. J. Marks, and G. K. Wong, “Dispersion of second-order optical nonlinearity in chromophoric self-assembled films by optical parametric amplification: experiment and theory,” Appl. Phys. Lett. 64, 2194–2196 (1994).
    [CrossRef]
  33. M. Cha, “Third order nonlinear optical spectroscopy of organic materials,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 1993).
  34. K. B. Rochford, R. Zanoni, Q. Gong, and G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
    [CrossRef]
  35. M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. W. Jenneskens, and W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
    [CrossRef]
  36. A. Otomo, “Design and fabrication of channel waveguides in a 4-dimethylamino-4-nitrostilbene side chain polymer,” M.S. thesis (University of Central Florida, Orlando, Fla., 1993); A. Otomo, G. I. Stegeman, W. Horsthuis, and G. Möhlmann, “Second harmonic generation by counter-directed guided waves in poled polymer waveguides,” in Polymers for Second-Order Nonlinear Optics, G. A. Lindsay and K. D. Singer, eds., ACS Symp. Ser. 601, 469–483 (1995).
    [CrossRef]
  37. J. Ma, S. Lin, W. Feng, R. J. Feuerstein, B. Hooker, and A. R. Mickelson, “Modeling photobleached optical polymer waveguides,” Appl. Opt. 34, 5352–5360 (1995).
    [CrossRef] [PubMed]
  38. J. I. Thackara, J. C. Chon, G. C. Bjorklund, W. Volksen, and D. M. Burland, “Polymeric electro-optic Mach–Zehnder switches,” Appl. Phys. Lett. 67, 3874–3876 (1995).
    [CrossRef]
  39. A. Otomo, S. M.-Neher, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Adiabatic focusing structures in low loss DANS polymer waveguides,” Electron. Lett. 29, 129–130 (1993).
    [CrossRef]
  40. D. Vakhshoori, R. J. Fischer, M. Hong, D. L. Sivco, G. J. Zydzik, G. N. S. Chu, and A. Y. Cho, “Blue–green surface-emitting second-harmonic generators on (111)B GaAs,” Appl. Phys. Lett. 59, 896–898 (1991).
    [CrossRef]
  41. A. Otomo, S. Mittler-Neher, Ch. Bosshard, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Second harmonic generation by counter propagating beams in 4-dimethylamino-4-nitrostilbene side-chain polymer channel waveguides,” Appl. Phys. Lett. 63, 3405–3407 (1993).
    [CrossRef]

1995 (2)

J. Ma, S. Lin, W. Feng, R. J. Feuerstein, B. Hooker, and A. R. Mickelson, “Modeling photobleached optical polymer waveguides,” Appl. Opt. 34, 5352–5360 (1995).
[CrossRef] [PubMed]

J. I. Thackara, J. C. Chon, G. C. Bjorklund, W. Volksen, and D. M. Burland, “Polymeric electro-optic Mach–Zehnder switches,” Appl. Phys. Lett. 67, 3874–3876 (1995).
[CrossRef]

1994 (3)

P. M. Lindquist, S. Yitzchaik, T. Zhang, D. R. Kanis, M. A. Ratner, T. J. Marks, and G. K. Wong, “Dispersion of second-order optical nonlinearity in chromophoric self-assembled films by optical parametric amplification: experiment and theory,” Appl. Phys. Lett. 64, 2194–2196 (1994).
[CrossRef]

A. Nahata, C. Wu, C. Knapp, V. Lu, J. Shan, and J. T. Yardley, “Thermally stable polyester polymers for second-order nonlinear optics,” Appl. Phys. Lett. 64, 3371–3373 (1994).
[CrossRef]

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency control for DWDM networks using sum-frequency generation in multilayer waveguides,” IEEE Photonics Technol. Lett. 6, 453–456 (1994).
[CrossRef]

1993 (7)

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency measurement for multichannel networks using sum-frequency generation in multilayer waveguides,” Electron. Lett. 29, 975–976 (1993).
[CrossRef]

K. Clays, N. J. Armstrong, and T. L. Penner, “Blue and green Cerenkov-type second-harmonic generation in a polymeric Langmuir–Blodgett waveguide,” J. Opt. Soc. Am. B 10, 886–893 (1993).
[CrossRef]

A. Nahata, J. Shan, J. T. Yardley, and C. Wu, “Electro-optic determination of the nonlinear-optical properties of a covalently functionalized Disperse Red 1 copolymer,” J. Opt. Soc. Am. B 10, 1553–1564 (1993).
[CrossRef]

M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
[CrossRef]

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

A. Otomo, S. Mittler-Neher, Ch. Bosshard, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Second harmonic generation by counter propagating beams in 4-dimethylamino-4-nitrostilbene side-chain polymer channel waveguides,” Appl. Phys. Lett. 63, 3405–3407 (1993).
[CrossRef]

A. Otomo, S. M.-Neher, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Adiabatic focusing structures in low loss DANS polymer waveguides,” Electron. Lett. 29, 129–130 (1993).
[CrossRef]

1992 (3)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

K. Yamamoto and K. Mizuuchi, “Blue-light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” IEEE Photonics Technol. Lett. 4, 435–437 (1992).
[CrossRef]

Y. Azumai, I. Seo, and H. Sato, “Enhanced second-harmonic generation with Cerenkov radiation scheme in organic film slab-guide at IR lines,” IEEE J. Quantum Electron. 28, 231–238 (1992).
[CrossRef]

1991 (4)

Ch. Bosshard, M. Flörsheimer, M. Küpfer, and P. Günter, “Cerenkov-type phase-matched second-harmonic generation in DCANP Langmuir–Blodgett film waveguides,” Opt. Commun. 85, 243–253 (1991).
[CrossRef]

D. Vakhshoori, R. J. Fischer, M. Hong, D. L. Sivco, G. J. Zydzik, G. N. S. Chu, and A. Y. Cho, “Blue–green surface-emitting second-harmonic generators on (111)B GaAs,” Appl. Phys. Lett. 59, 896–898 (1991).
[CrossRef]

J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, and R. Lytel, “Thermal stability of electro-optic response in poled polyimide systems,” Appl. Phys. Lett. 58, 225–227 (1991).
[CrossRef]

S. Yitzchaik, G. Berkovic, and V. Krongauz, “Charge injection asymmetry: a new route to strong optical nonlinearity in poled polymers,” J. Appl. Phys. 70, 3949–3951 (1991).
[CrossRef]

1990 (4)

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. W. Jenneskens, and W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

C. J. van der Poel, J. D. Bierlein, J. B. Brown, and S. Colak, “Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

G. Khanarian and R. A. Norwood, “Efficient quasi phase matched second harmonic generation in a polymer waveguide,” in Nonlinear Optical Properties of Organic Materials III, G. Khanarian, ed., Proc. SPIE 1337, 44–52 (1990).
[CrossRef]

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and E. Staring, “Poled polymer for frequency doubling of diode lasers,” in Nonlinear Optical Properties of Organic Materials III, G. Khanarian, ed., Proc. SPIE 1337, 35–43 (1990).
[CrossRef]

1989 (3)

M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. G. Higgins, and A. Dienes, “Second-harmonic generation and absorption studies of polymer-dye films oriented by corona-onset poling at elevated temperatures,” J. Opt. Soc. Am. B 6, 733–741 (1989).
[CrossRef]

K. B. Rochford, R. Zanoni, Q. Gong, and G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

G. R. Möhlmann, W. H. G. Horsthuis, C. P. J. M. van der Vorst, A. McDonach, M. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, P. Van Daele, E. Van Tomme, and R. Baets, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. SPIE 1147, 245–255 (1989).
[CrossRef]

1987 (1)

1982 (1)

R. Normandin and G. I. Stegeman, “A picosecond transient digitizer based on nonlinear integrated optics,” Appl. Phys. Lett. 40, 759–761 (1982).
[CrossRef]

1981 (1)

P. J. Vella, R. Normandin, and G. I. Stegeman, “Enhanced second-harmonic generation by counter-propagating guided optical waves,” Appl. Phys. Lett. 38, 759–760 (1981).
[CrossRef]

1980 (1)

R. Normandin and G. I. Stegeman, “Picosecond signal processing with planar nonlinear integrated optics,” Appl. Phys. Lett. 36, 253–255 (1980).
[CrossRef]

1979 (1)

1971 (1)

B. J. Orr and J. F. Ward, “Perturbation theory of the nonlinear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[CrossRef]

Armstrong, N. J.

Azumai, Y.

Y. Azumai, I. Seo, and H. Sato, “Enhanced second-harmonic generation with Cerenkov radiation scheme in organic film slab-guide at IR lines,” IEEE J. Quantum Electron. 28, 231–238 (1992).
[CrossRef]

Baets, R.

G. R. Möhlmann, W. H. G. Horsthuis, C. P. J. M. van der Vorst, A. McDonach, M. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, P. Van Daele, E. Van Tomme, and R. Baets, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. SPIE 1147, 245–255 (1989).
[CrossRef]

Berkovic, G.

S. Yitzchaik, G. Berkovic, and V. Krongauz, “Charge injection asymmetry: a new route to strong optical nonlinearity in poled polymers,” J. Appl. Phys. 70, 3949–3951 (1991).
[CrossRef]

Bierlein, J. D.

C. J. van der Poel, J. D. Bierlein, J. B. Brown, and S. Colak, “Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

Binkley, E. S.

J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, and R. Lytel, “Thermal stability of electro-optic response in poled polyimide systems,” Appl. Phys. Lett. 58, 225–227 (1991).
[CrossRef]

Bjorklund, G. C.

J. I. Thackara, J. C. Chon, G. C. Bjorklund, W. Volksen, and D. M. Burland, “Polymeric electro-optic Mach–Zehnder switches,” Appl. Phys. Lett. 67, 3874–3876 (1995).
[CrossRef]

Bosshard, Ch.

A. Otomo, S. Mittler-Neher, Ch. Bosshard, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Second harmonic generation by counter propagating beams in 4-dimethylamino-4-nitrostilbene side-chain polymer channel waveguides,” Appl. Phys. Lett. 63, 3405–3407 (1993).
[CrossRef]

Ch. Bosshard, M. Flörsheimer, M. Küpfer, and P. Günter, “Cerenkov-type phase-matched second-harmonic generation in DCANP Langmuir–Blodgett film waveguides,” Opt. Commun. 85, 243–253 (1991).
[CrossRef]

Brown, J. B.

C. J. van der Poel, J. D. Bierlein, J. B. Brown, and S. Colak, “Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

Burland, D. M.

J. I. Thackara, J. C. Chon, G. C. Bjorklund, W. Volksen, and D. M. Burland, “Polymeric electro-optic Mach–Zehnder switches,” Appl. Phys. Lett. 67, 3874–3876 (1995).
[CrossRef]

M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Cho, A. Y.

D. Vakhshoori, R. J. Fischer, M. Hong, D. L. Sivco, G. J. Zydzik, G. N. S. Chu, and A. Y. Cho, “Blue–green surface-emitting second-harmonic generators on (111)B GaAs,” Appl. Phys. Lett. 59, 896–898 (1991).
[CrossRef]

Chon, J. C.

J. I. Thackara, J. C. Chon, G. C. Bjorklund, W. Volksen, and D. M. Burland, “Polymeric electro-optic Mach–Zehnder switches,” Appl. Phys. Lett. 67, 3874–3876 (1995).
[CrossRef]

Chu, G. N. S.

D. Vakhshoori, R. J. Fischer, M. Hong, D. L. Sivco, G. J. Zydzik, G. N. S. Chu, and A. Y. Cho, “Blue–green surface-emitting second-harmonic generators on (111)B GaAs,” Appl. Phys. Lett. 59, 896–898 (1991).
[CrossRef]

Clays, K.

Colak, S.

C. J. van der Poel, J. D. Bierlein, J. B. Brown, and S. Colak, “Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

Copeland, J. M.

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. W. Jenneskens, and W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

Copeland, M.

G. R. Möhlmann, W. H. G. Horsthuis, C. P. J. M. van der Vorst, A. McDonach, M. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, P. Van Daele, E. Van Tomme, and R. Baets, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. SPIE 1147, 245–255 (1989).
[CrossRef]

Cyr, N.

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency control for DWDM networks using sum-frequency generation in multilayer waveguides,” IEEE Photonics Technol. Lett. 6, 453–456 (1994).
[CrossRef]

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency measurement for multichannel networks using sum-frequency generation in multilayer waveguides,” Electron. Lett. 29, 975–976 (1993).
[CrossRef]

Diemeer, M. B. J.

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. W. Jenneskens, and W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

G. R. Möhlmann, W. H. G. Horsthuis, C. P. J. M. van der Vorst, A. McDonach, M. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, P. Van Daele, E. Van Tomme, and R. Baets, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. SPIE 1147, 245–255 (1989).
[CrossRef]

Dienes, A.

Duchet, C.

G. R. Möhlmann, W. H. G. Horsthuis, C. P. J. M. van der Vorst, A. McDonach, M. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, P. Van Daele, E. Van Tomme, and R. Baets, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. SPIE 1147, 245–255 (1989).
[CrossRef]

Ermer, S.

J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, and R. Lytel, “Thermal stability of electro-optic response in poled polyimide systems,” Appl. Phys. Lett. 58, 225–227 (1991).
[CrossRef]

Fabre, P.

G. R. Möhlmann, W. H. G. Horsthuis, C. P. J. M. van der Vorst, A. McDonach, M. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, P. Van Daele, E. Van Tomme, and R. Baets, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. SPIE 1147, 245–255 (1989).
[CrossRef]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Feng, W.

Feuerstein, R. J.

Fischer, R. J.

D. Vakhshoori, R. J. Fischer, M. Hong, D. L. Sivco, G. J. Zydzik, G. N. S. Chu, and A. Y. Cho, “Blue–green surface-emitting second-harmonic generators on (111)B GaAs,” Appl. Phys. Lett. 59, 896–898 (1991).
[CrossRef]

Flörsheimer, M.

Ch. Bosshard, M. Flörsheimer, M. Küpfer, and P. Günter, “Cerenkov-type phase-matched second-harmonic generation in DCANP Langmuir–Blodgett film waveguides,” Opt. Commun. 85, 243–253 (1991).
[CrossRef]

Gong, Q.

K. B. Rochford, R. Zanoni, Q. Gong, and G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

Günter, P.

Ch. Bosshard, M. Flörsheimer, M. Küpfer, and P. Günter, “Cerenkov-type phase-matched second-harmonic generation in DCANP Langmuir–Blodgett film waveguides,” Opt. Commun. 85, 243–253 (1991).
[CrossRef]

Guy, M.

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency control for DWDM networks using sum-frequency generation in multilayer waveguides,” IEEE Photonics Technol. Lett. 6, 453–456 (1994).
[CrossRef]

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency measurement for multichannel networks using sum-frequency generation in multilayer waveguides,” Electron. Lett. 29, 975–976 (1993).
[CrossRef]

Higgins, B. G.

Hong, M.

D. Vakhshoori, R. J. Fischer, M. Hong, D. L. Sivco, G. J. Zydzik, G. N. S. Chu, and A. Y. Cho, “Blue–green surface-emitting second-harmonic generators on (111)B GaAs,” Appl. Phys. Lett. 59, 896–898 (1991).
[CrossRef]

Hooker, B.

Horsthuis, W. H. G.

A. Otomo, S. M.-Neher, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Adiabatic focusing structures in low loss DANS polymer waveguides,” Electron. Lett. 29, 129–130 (1993).
[CrossRef]

A. Otomo, S. Mittler-Neher, Ch. Bosshard, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Second harmonic generation by counter propagating beams in 4-dimethylamino-4-nitrostilbene side-chain polymer channel waveguides,” Appl. Phys. Lett. 63, 3405–3407 (1993).
[CrossRef]

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. W. Jenneskens, and W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

G. R. Möhlmann, W. H. G. Horsthuis, C. P. J. M. van der Vorst, A. McDonach, M. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, P. Van Daele, E. Van Tomme, and R. Baets, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. SPIE 1147, 245–255 (1989).
[CrossRef]

Jenneskens, L. W.

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. W. Jenneskens, and W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Jurich, M.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

Kanis, D. R.

P. M. Lindquist, S. Yitzchaik, T. Zhang, D. R. Kanis, M. A. Ratner, T. J. Marks, and G. K. Wong, “Dispersion of second-order optical nonlinearity in chromophoric self-assembled films by optical parametric amplification: experiment and theory,” Appl. Phys. Lett. 64, 2194–2196 (1994).
[CrossRef]

Kenney, J. T.

J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, and R. Lytel, “Thermal stability of electro-optic response in poled polyimide systems,” Appl. Phys. Lett. 58, 225–227 (1991).
[CrossRef]

Khanarian, G.

G. Khanarian and R. A. Norwood, “Efficient quasi phase matched second harmonic generation in a polymer waveguide,” in Nonlinear Optical Properties of Organic Materials III, G. Khanarian, ed., Proc. SPIE 1337, 44–52 (1990).
[CrossRef]

Knapp, C.

A. Nahata, C. Wu, C. Knapp, V. Lu, J. Shan, and J. T. Yardley, “Thermally stable polyester polymers for second-order nonlinear optics,” Appl. Phys. Lett. 64, 3371–3373 (1994).
[CrossRef]

Knoesen, A.

Kowel, S. T.

Krongauz, V.

S. Yitzchaik, G. Berkovic, and V. Krongauz, “Charge injection asymmetry: a new route to strong optical nonlinearity in poled polymers,” J. Appl. Phys. 70, 3949–3951 (1991).
[CrossRef]

Küpfer, M.

Ch. Bosshard, M. Flörsheimer, M. Küpfer, and P. Günter, “Cerenkov-type phase-matched second-harmonic generation in DCANP Langmuir–Blodgett film waveguides,” Opt. Commun. 85, 243–253 (1991).
[CrossRef]

Kuzyk, M. G.

Lin, S.

Lindquist, P. M.

P. M. Lindquist, S. Yitzchaik, T. Zhang, D. R. Kanis, M. A. Ratner, T. J. Marks, and G. K. Wong, “Dispersion of second-order optical nonlinearity in chromophoric self-assembled films by optical parametric amplification: experiment and theory,” Appl. Phys. Lett. 64, 2194–2196 (1994).
[CrossRef]

Lipscomb, G. F.

J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, and R. Lytel, “Thermal stability of electro-optic response in poled polyimide systems,” Appl. Phys. Lett. 58, 225–227 (1991).
[CrossRef]

Lu, V.

A. Nahata, C. Wu, C. Knapp, V. Lu, J. Shan, and J. T. Yardley, “Thermally stable polyester polymers for second-order nonlinear optics,” Appl. Phys. Lett. 64, 3371–3373 (1994).
[CrossRef]

Lytel, R.

J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, and R. Lytel, “Thermal stability of electro-optic response in poled polyimide systems,” Appl. Phys. Lett. 58, 225–227 (1991).
[CrossRef]

M.-Neher, S.

A. Otomo, S. M.-Neher, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Adiabatic focusing structures in low loss DANS polymer waveguides,” Electron. Lett. 29, 129–130 (1993).
[CrossRef]

Ma, J.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Marks, T. J.

P. M. Lindquist, S. Yitzchaik, T. Zhang, D. R. Kanis, M. A. Ratner, T. J. Marks, and G. K. Wong, “Dispersion of second-order optical nonlinearity in chromophoric self-assembled films by optical parametric amplification: experiment and theory,” Appl. Phys. Lett. 64, 2194–2196 (1994).
[CrossRef]

McDonach, A.

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. W. Jenneskens, and W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

G. R. Möhlmann, W. H. G. Horsthuis, C. P. J. M. van der Vorst, A. McDonach, M. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, P. Van Daele, E. Van Tomme, and R. Baets, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. SPIE 1147, 245–255 (1989).
[CrossRef]

Mickelson, A. R.

Miller, R. D.

M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
[CrossRef]

Mittler-Neher, S.

A. Otomo, S. Mittler-Neher, Ch. Bosshard, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Second harmonic generation by counter propagating beams in 4-dimethylamino-4-nitrostilbene side-chain polymer channel waveguides,” Appl. Phys. Lett. 63, 3405–3407 (1993).
[CrossRef]

Mizuuchi, K.

K. Yamamoto and K. Mizuuchi, “Blue-light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” IEEE Photonics Technol. Lett. 4, 435–437 (1992).
[CrossRef]

Möhlmann, G. R.

A. Otomo, S. M.-Neher, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Adiabatic focusing structures in low loss DANS polymer waveguides,” Electron. Lett. 29, 129–130 (1993).
[CrossRef]

A. Otomo, S. Mittler-Neher, Ch. Bosshard, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Second harmonic generation by counter propagating beams in 4-dimethylamino-4-nitrostilbene side-chain polymer channel waveguides,” Appl. Phys. Lett. 63, 3405–3407 (1993).
[CrossRef]

G. R. Möhlmann, W. H. G. Horsthuis, C. P. J. M. van der Vorst, A. McDonach, M. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, P. Van Daele, E. Van Tomme, and R. Baets, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. SPIE 1147, 245–255 (1989).
[CrossRef]

Mortazavi, M. A.

Nahata, A.

A. Nahata, C. Wu, C. Knapp, V. Lu, J. Shan, and J. T. Yardley, “Thermally stable polyester polymers for second-order nonlinear optics,” Appl. Phys. Lett. 64, 3371–3373 (1994).
[CrossRef]

A. Nahata, J. Shan, J. T. Yardley, and C. Wu, “Electro-optic determination of the nonlinear-optical properties of a covalently functionalized Disperse Red 1 copolymer,” J. Opt. Soc. Am. B 10, 1553–1564 (1993).
[CrossRef]

Nijhuis, S.

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and E. Staring, “Poled polymer for frequency doubling of diode lasers,” in Nonlinear Optical Properties of Organic Materials III, G. Khanarian, ed., Proc. SPIE 1337, 35–43 (1990).
[CrossRef]

Normandin, R.

R. Normandin and G. I. Stegeman, “A picosecond transient digitizer based on nonlinear integrated optics,” Appl. Phys. Lett. 40, 759–761 (1982).
[CrossRef]

P. J. Vella, R. Normandin, and G. I. Stegeman, “Enhanced second-harmonic generation by counter-propagating guided optical waves,” Appl. Phys. Lett. 38, 759–760 (1981).
[CrossRef]

R. Normandin and G. I. Stegeman, “Picosecond signal processing with planar nonlinear integrated optics,” Appl. Phys. Lett. 36, 253–255 (1980).
[CrossRef]

R. Normandin and G. I. Stegeman, “Nondegenerate four-wave mixing in integrated optics,” Opt. Lett. 4, 58–59 (1979).
[CrossRef] [PubMed]

Norwood, R. A.

G. Khanarian and R. A. Norwood, “Efficient quasi phase matched second harmonic generation in a polymer waveguide,” in Nonlinear Optical Properties of Organic Materials III, G. Khanarian, ed., Proc. SPIE 1337, 44–52 (1990).
[CrossRef]

Orr, B. J.

B. J. Orr and J. F. Ward, “Perturbation theory of the nonlinear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[CrossRef]

Otomo, A.

A. Otomo, S. Mittler-Neher, Ch. Bosshard, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Second harmonic generation by counter propagating beams in 4-dimethylamino-4-nitrostilbene side-chain polymer channel waveguides,” Appl. Phys. Lett. 63, 3405–3407 (1993).
[CrossRef]

A. Otomo, S. M.-Neher, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Adiabatic focusing structures in low loss DANS polymer waveguides,” Electron. Lett. 29, 129–130 (1993).
[CrossRef]

Penner, T. L.

Ratner, M. A.

P. M. Lindquist, S. Yitzchaik, T. Zhang, D. R. Kanis, M. A. Ratner, T. J. Marks, and G. K. Wong, “Dispersion of second-order optical nonlinearity in chromophoric self-assembled films by optical parametric amplification: experiment and theory,” Appl. Phys. Lett. 64, 2194–2196 (1994).
[CrossRef]

Rikken, G. L. J. A.

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and E. Staring, “Poled polymer for frequency doubling of diode lasers,” in Nonlinear Optical Properties of Organic Materials III, G. Khanarian, ed., Proc. SPIE 1337, 35–43 (1990).
[CrossRef]

Rochford, K. B.

K. B. Rochford, R. Zanoni, Q. Gong, and G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

Sato, H.

Y. Azumai, I. Seo, and H. Sato, “Enhanced second-harmonic generation with Cerenkov radiation scheme in organic film slab-guide at IR lines,” IEEE J. Quantum Electron. 28, 231–238 (1992).
[CrossRef]

Seo, I.

Y. Azumai, I. Seo, and H. Sato, “Enhanced second-harmonic generation with Cerenkov radiation scheme in organic film slab-guide at IR lines,” IEEE J. Quantum Electron. 28, 231–238 (1992).
[CrossRef]

Seppen, C. J. E.

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and E. Staring, “Poled polymer for frequency doubling of diode lasers,” in Nonlinear Optical Properties of Organic Materials III, G. Khanarian, ed., Proc. SPIE 1337, 35–43 (1990).
[CrossRef]

Shan, J.

A. Nahata, C. Wu, C. Knapp, V. Lu, J. Shan, and J. T. Yardley, “Thermally stable polyester polymers for second-order nonlinear optics,” Appl. Phys. Lett. 64, 3371–3373 (1994).
[CrossRef]

A. Nahata, J. Shan, J. T. Yardley, and C. Wu, “Electro-optic determination of the nonlinear-optical properties of a covalently functionalized Disperse Red 1 copolymer,” J. Opt. Soc. Am. B 10, 1553–1564 (1993).
[CrossRef]

Singer, K. D.

Sivco, D. L.

D. Vakhshoori, R. J. Fischer, M. Hong, D. L. Sivco, G. J. Zydzik, G. N. S. Chu, and A. Y. Cho, “Blue–green surface-emitting second-harmonic generators on (111)B GaAs,” Appl. Phys. Lett. 59, 896–898 (1991).
[CrossRef]

Skumanich, A.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

Sohn, J. E.

Stähelin, M.

M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
[CrossRef]

Staring, E.

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and E. Staring, “Poled polymer for frequency doubling of diode lasers,” in Nonlinear Optical Properties of Organic Materials III, G. Khanarian, ed., Proc. SPIE 1337, 35–43 (1990).
[CrossRef]

Stegeman, G. I.

A. Otomo, S. M.-Neher, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Adiabatic focusing structures in low loss DANS polymer waveguides,” Electron. Lett. 29, 129–130 (1993).
[CrossRef]

A. Otomo, S. Mittler-Neher, Ch. Bosshard, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Second harmonic generation by counter propagating beams in 4-dimethylamino-4-nitrostilbene side-chain polymer channel waveguides,” Appl. Phys. Lett. 63, 3405–3407 (1993).
[CrossRef]

K. B. Rochford, R. Zanoni, Q. Gong, and G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

R. Normandin and G. I. Stegeman, “A picosecond transient digitizer based on nonlinear integrated optics,” Appl. Phys. Lett. 40, 759–761 (1982).
[CrossRef]

P. J. Vella, R. Normandin, and G. I. Stegeman, “Enhanced second-harmonic generation by counter-propagating guided optical waves,” Appl. Phys. Lett. 38, 759–760 (1981).
[CrossRef]

R. Normandin and G. I. Stegeman, “Picosecond signal processing with planar nonlinear integrated optics,” Appl. Phys. Lett. 36, 253–255 (1980).
[CrossRef]

R. Normandin and G. I. Stegeman, “Nondegenerate four-wave mixing in integrated optics,” Opt. Lett. 4, 58–59 (1979).
[CrossRef] [PubMed]

Suyten, F. M. M.

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. W. Jenneskens, and W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

G. R. Möhlmann, W. H. G. Horsthuis, C. P. J. M. van der Vorst, A. McDonach, M. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, P. Van Daele, E. Van Tomme, and R. Baets, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. SPIE 1147, 245–255 (1989).
[CrossRef]

Svilans, M.

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency control for DWDM networks using sum-frequency generation in multilayer waveguides,” IEEE Photonics Technol. Lett. 6, 453–456 (1994).
[CrossRef]

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency measurement for multichannel networks using sum-frequency generation in multilayer waveguides,” Electron. Lett. 29, 975–976 (1993).
[CrossRef]

Swalen, J. D.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

Têtu, M.

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency control for DWDM networks using sum-frequency generation in multilayer waveguides,” IEEE Photonics Technol. Lett. 6, 453–456 (1994).
[CrossRef]

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency measurement for multichannel networks using sum-frequency generation in multilayer waveguides,” Electron. Lett. 29, 975–976 (1993).
[CrossRef]

Thackara, J. I.

J. I. Thackara, J. C. Chon, G. C. Bjorklund, W. Volksen, and D. M. Burland, “Polymeric electro-optic Mach–Zehnder switches,” Appl. Phys. Lett. 67, 3874–3876 (1995).
[CrossRef]

Trommel, E. S.

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. W. Jenneskens, and W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

G. R. Möhlmann, W. H. G. Horsthuis, C. P. J. M. van der Vorst, A. McDonach, M. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, P. Van Daele, E. Van Tomme, and R. Baets, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. SPIE 1147, 245–255 (1989).
[CrossRef]

Twieg, R. J.

M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
[CrossRef]

Vakhshoori, D.

D. Vakhshoori, R. J. Fischer, M. Hong, D. L. Sivco, G. J. Zydzik, G. N. S. Chu, and A. Y. Cho, “Blue–green surface-emitting second-harmonic generators on (111)B GaAs,” Appl. Phys. Lett. 59, 896–898 (1991).
[CrossRef]

Valley, J. F.

J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, and R. Lytel, “Thermal stability of electro-optic response in poled polyimide systems,” Appl. Phys. Lett. 58, 225–227 (1991).
[CrossRef]

Van Daele, P.

G. R. Möhlmann, W. H. G. Horsthuis, C. P. J. M. van der Vorst, A. McDonach, M. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, P. Van Daele, E. Van Tomme, and R. Baets, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. SPIE 1147, 245–255 (1989).
[CrossRef]

van der Poel, C. J.

C. J. van der Poel, J. D. Bierlein, J. B. Brown, and S. Colak, “Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

van der Vorst, C. P. J. M.

G. R. Möhlmann, W. H. G. Horsthuis, C. P. J. M. van der Vorst, A. McDonach, M. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, P. Van Daele, E. Van Tomme, and R. Baets, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. SPIE 1147, 245–255 (1989).
[CrossRef]

Van Tomme, E.

G. R. Möhlmann, W. H. G. Horsthuis, C. P. J. M. van der Vorst, A. McDonach, M. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, P. Van Daele, E. Van Tomme, and R. Baets, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. SPIE 1147, 245–255 (1989).
[CrossRef]

Vella, P. J.

P. J. Vella, R. Normandin, and G. I. Stegeman, “Enhanced second-harmonic generation by counter-propagating guided optical waves,” Appl. Phys. Lett. 38, 759–760 (1981).
[CrossRef]

Villeneuve, B.

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency control for DWDM networks using sum-frequency generation in multilayer waveguides,” IEEE Photonics Technol. Lett. 6, 453–456 (1994).
[CrossRef]

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency measurement for multichannel networks using sum-frequency generation in multilayer waveguides,” Electron. Lett. 29, 975–976 (1993).
[CrossRef]

Volksen, W.

J. I. Thackara, J. C. Chon, G. C. Bjorklund, W. Volksen, and D. M. Burland, “Polymeric electro-optic Mach–Zehnder switches,” Appl. Phys. Lett. 67, 3874–3876 (1995).
[CrossRef]

M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
[CrossRef]

Walsh, C. A.

M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
[CrossRef]

Ward, J. F.

B. J. Orr and J. F. Ward, “Perturbation theory of the nonlinear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[CrossRef]

Wong, G. K.

P. M. Lindquist, S. Yitzchaik, T. Zhang, D. R. Kanis, M. A. Ratner, T. J. Marks, and G. K. Wong, “Dispersion of second-order optical nonlinearity in chromophoric self-assembled films by optical parametric amplification: experiment and theory,” Appl. Phys. Lett. 64, 2194–2196 (1994).
[CrossRef]

Wu, C.

A. Nahata, C. Wu, C. Knapp, V. Lu, J. Shan, and J. T. Yardley, “Thermally stable polyester polymers for second-order nonlinear optics,” Appl. Phys. Lett. 64, 3371–3373 (1994).
[CrossRef]

A. Nahata, J. Shan, J. T. Yardley, and C. Wu, “Electro-optic determination of the nonlinear-optical properties of a covalently functionalized Disperse Red 1 copolymer,” J. Opt. Soc. Am. B 10, 1553–1564 (1993).
[CrossRef]

Wu, J. W.

J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, and R. Lytel, “Thermal stability of electro-optic response in poled polyimide systems,” Appl. Phys. Lett. 58, 225–227 (1991).
[CrossRef]

Yamamoto, K.

K. Yamamoto and K. Mizuuchi, “Blue-light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” IEEE Photonics Technol. Lett. 4, 435–437 (1992).
[CrossRef]

Yardley, J. T.

A. Nahata, C. Wu, C. Knapp, V. Lu, J. Shan, and J. T. Yardley, “Thermally stable polyester polymers for second-order nonlinear optics,” Appl. Phys. Lett. 64, 3371–3373 (1994).
[CrossRef]

A. Nahata, J. Shan, J. T. Yardley, and C. Wu, “Electro-optic determination of the nonlinear-optical properties of a covalently functionalized Disperse Red 1 copolymer,” J. Opt. Soc. Am. B 10, 1553–1564 (1993).
[CrossRef]

Yitzchaik, S.

P. M. Lindquist, S. Yitzchaik, T. Zhang, D. R. Kanis, M. A. Ratner, T. J. Marks, and G. K. Wong, “Dispersion of second-order optical nonlinearity in chromophoric self-assembled films by optical parametric amplification: experiment and theory,” Appl. Phys. Lett. 64, 2194–2196 (1994).
[CrossRef]

S. Yitzchaik, G. Berkovic, and V. Krongauz, “Charge injection asymmetry: a new route to strong optical nonlinearity in poled polymers,” J. Appl. Phys. 70, 3949–3951 (1991).
[CrossRef]

Zanoni, R.

K. B. Rochford, R. Zanoni, Q. Gong, and G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

Zhang, T.

P. M. Lindquist, S. Yitzchaik, T. Zhang, D. R. Kanis, M. A. Ratner, T. J. Marks, and G. K. Wong, “Dispersion of second-order optical nonlinearity in chromophoric self-assembled films by optical parametric amplification: experiment and theory,” Appl. Phys. Lett. 64, 2194–2196 (1994).
[CrossRef]

Zydzik, G. J.

D. Vakhshoori, R. J. Fischer, M. Hong, D. L. Sivco, G. J. Zydzik, G. N. S. Chu, and A. Y. Cho, “Blue–green surface-emitting second-harmonic generators on (111)B GaAs,” Appl. Phys. Lett. 59, 896–898 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (12)

J. I. Thackara, J. C. Chon, G. C. Bjorklund, W. Volksen, and D. M. Burland, “Polymeric electro-optic Mach–Zehnder switches,” Appl. Phys. Lett. 67, 3874–3876 (1995).
[CrossRef]

K. B. Rochford, R. Zanoni, Q. Gong, and G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

P. M. Lindquist, S. Yitzchaik, T. Zhang, D. R. Kanis, M. A. Ratner, T. J. Marks, and G. K. Wong, “Dispersion of second-order optical nonlinearity in chromophoric self-assembled films by optical parametric amplification: experiment and theory,” Appl. Phys. Lett. 64, 2194–2196 (1994).
[CrossRef]

A. Nahata, C. Wu, C. Knapp, V. Lu, J. Shan, and J. T. Yardley, “Thermally stable polyester polymers for second-order nonlinear optics,” Appl. Phys. Lett. 64, 3371–3373 (1994).
[CrossRef]

J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, and R. Lytel, “Thermal stability of electro-optic response in poled polyimide systems,” Appl. Phys. Lett. 58, 225–227 (1991).
[CrossRef]

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

C. J. van der Poel, J. D. Bierlein, J. B. Brown, and S. Colak, “Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

R. Normandin and G. I. Stegeman, “Picosecond signal processing with planar nonlinear integrated optics,” Appl. Phys. Lett. 36, 253–255 (1980).
[CrossRef]

R. Normandin and G. I. Stegeman, “A picosecond transient digitizer based on nonlinear integrated optics,” Appl. Phys. Lett. 40, 759–761 (1982).
[CrossRef]

P. J. Vella, R. Normandin, and G. I. Stegeman, “Enhanced second-harmonic generation by counter-propagating guided optical waves,” Appl. Phys. Lett. 38, 759–760 (1981).
[CrossRef]

D. Vakhshoori, R. J. Fischer, M. Hong, D. L. Sivco, G. J. Zydzik, G. N. S. Chu, and A. Y. Cho, “Blue–green surface-emitting second-harmonic generators on (111)B GaAs,” Appl. Phys. Lett. 59, 896–898 (1991).
[CrossRef]

A. Otomo, S. Mittler-Neher, Ch. Bosshard, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Second harmonic generation by counter propagating beams in 4-dimethylamino-4-nitrostilbene side-chain polymer channel waveguides,” Appl. Phys. Lett. 63, 3405–3407 (1993).
[CrossRef]

Electron. Lett. (3)

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency measurement for multichannel networks using sum-frequency generation in multilayer waveguides,” Electron. Lett. 29, 975–976 (1993).
[CrossRef]

M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, J. M. Copeland, L. W. Jenneskens, and W. H. G. Horsthuis, “Photoinduced channel waveguide formation in nonlinear optical polymers,” Electron. Lett. 26, 379–380 (1990).
[CrossRef]

A. Otomo, S. M.-Neher, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Adiabatic focusing structures in low loss DANS polymer waveguides,” Electron. Lett. 29, 129–130 (1993).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Y. Azumai, I. Seo, and H. Sato, “Enhanced second-harmonic generation with Cerenkov radiation scheme in organic film slab-guide at IR lines,” IEEE J. Quantum Electron. 28, 231–238 (1992).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

K. Yamamoto and K. Mizuuchi, “Blue-light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” IEEE Photonics Technol. Lett. 4, 435–437 (1992).
[CrossRef]

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, and N. Cyr, “Optical frequency control for DWDM networks using sum-frequency generation in multilayer waveguides,” IEEE Photonics Technol. Lett. 6, 453–456 (1994).
[CrossRef]

J. Appl. Phys. (2)

S. Yitzchaik, G. Berkovic, and V. Krongauz, “Charge injection asymmetry: a new route to strong optical nonlinearity in poled polymers,” J. Appl. Phys. 70, 3949–3951 (1991).
[CrossRef]

M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
[CrossRef]

J. Opt. Soc. Am. B (4)

Mol. Phys. (1)

B. J. Orr and J. F. Ward, “Perturbation theory of the nonlinear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[CrossRef]

Opt. Commun. (1)

Ch. Bosshard, M. Flörsheimer, M. Küpfer, and P. Günter, “Cerenkov-type phase-matched second-harmonic generation in DCANP Langmuir–Blodgett film waveguides,” Opt. Commun. 85, 243–253 (1991).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (3)

G. Khanarian and R. A. Norwood, “Efficient quasi phase matched second harmonic generation in a polymer waveguide,” in Nonlinear Optical Properties of Organic Materials III, G. Khanarian, ed., Proc. SPIE 1337, 44–52 (1990).
[CrossRef]

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and E. Staring, “Poled polymer for frequency doubling of diode lasers,” in Nonlinear Optical Properties of Organic Materials III, G. Khanarian, ed., Proc. SPIE 1337, 35–43 (1990).
[CrossRef]

G. R. Möhlmann, W. H. G. Horsthuis, C. P. J. M. van der Vorst, A. McDonach, M. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, P. Van Daele, E. Van Tomme, and R. Baets, “Recent developments in optically nonlinear polymers and related electro-optic devices,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. SPIE 1147, 245–255 (1989).
[CrossRef]

Other (9)

M. Abramowitz and I. E. Stegun, eds., Handbook of Mathematical Functions (U.S. Government Printing Office, Washington, D.C., 1972); E. Toussaere, “Polymeres electrooptiques pour l’optique nonlineaire: caracterisation optique et modeles satistiques,” Ph.D. dissertation (University of Paris, Paris, 1993).

A. Otomo, “Second order optical nonlinearities and wave mixing devices in poled polymer waveguides,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 1995).

C. J. F. Böttcher, Theory of Electric Polarization, 2nd ed. (Elsevier, Amsterdam, 1973), Vol. 1, Chap. 5.

M. Cha, “Third order nonlinear optical spectroscopy of organic materials,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 1993).

A. Otomo, “Design and fabrication of channel waveguides in a 4-dimethylamino-4-nitrostilbene side chain polymer,” M.S. thesis (University of Central Florida, Orlando, Fla., 1993); A. Otomo, G. I. Stegeman, W. Horsthuis, and G. Möhlmann, “Second harmonic generation by counter-directed guided waves in poled polymer waveguides,” in Polymers for Second-Order Nonlinear Optics, G. A. Lindsay and K. D. Singer, eds., ACS Symp. Ser. 601, 469–483 (1995).
[CrossRef]

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chaps. 6 and 7; R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), Chap. 2.

W. H. G. Horsthuis, G. R. Möhlmann, and H. W. Mertens, “Nonlinear optical polymers: waveguide devices based on second order effects,” in Nonlinear Guided-Wave Phenomena, Vol. 15 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper MD1, pp. 70–73.

R. Normandin, R. L. Williams, and F. Chatenoud, “Enhanced surface emitting waveguides for visible, monolithic semiconductor laser sources,” Electron. Lett. 26, 2088–2089 (1990); R. Normandin, S. Létourneau, F. Chatenoud, and R. L. Williams, “Monolithic, surface-emitting, semiconductor visible lasers and spectrometers for WDM fiber communication systems,” IEEE J. Quantum Electron. 27, 1520–1530 (1991).
[CrossRef]

C. T. J. Wreesmann, E. W. P. Erdhuisen, and D. J. Sikkema, “Polyurethanes prepared from non-linear optical active diols,” European patent EP 350112 (10 Jan. 1990); “Non-linear optical active diols and polyurethanes prepared therefrom,” U.S. patent 5001209 (19 March 1991); “Non-linear optical active diols and polyurethanes prepared therefrom,” Canadian patent CA 1332200 (27 Sept. 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of sum-frequency mixing by counterpropagating waves.

Fig. 2
Fig. 2

Structure of the film and poling setup.

Fig. 3
Fig. 3

Wavelength dispersion of the unpoled DANS polymer. (a) Absorption spectrum. Filled circles, absorption spectrum measured with a spectrophotometer; open circles, propagation losses in waveguides; dashed curve, fit to the homogeneously broadened dispersion model; solid curve, fit to the inhomogeneously broadened dispersion model. (b) Refractive index. Filled circles, measured refractive index; dotted curve, fit to the Sellmeier dispersion; solid curve, fit to the inhomogeneously broadened dispersion model.

Fig. 4
Fig. 4

Wavelength dispersion of the nonlinearity of the DANS polymer poled at 300 V/μm. (a) Magnitude of d22. Filled circles, measured nonlinearity; dashed curve, fit to the homogeneously broadened dispersion model; solid curve, fit to the inhomogeneously broadened dispersion model. (b) Phase of d22. Filled circles, measured phase; solid curve, derived phase function from the magnitude fit to the inhomogeneously broadened dispersion model.

Fig. 5
Fig. 5

Absorption changes of photobleaching DANS SCP in various atmospheres: dotted curves, in O2; solid curves, in air; dashed curves, in N2. (a) Transmission change during bleaching, (b) absorption spectra of the films bleached for 20 h. Dotted–dashed curve, unbleached film.

Fig. 6
Fig. 6

Theoretical evaluation of exposure duration in photobleaching the DANS SCP film. (a) Calculated refractive-index depth profiles for the film bleached for various durations, (b) effective width of the 4-μm-wide channel waveguide with various photobleaching exposures.

Fig. 7
Fig. 7

Surface-emitting SHG device structure viewed from the direction into which the SHG signal is radiated, i.e., above.

Fig. 8
Fig. 8

Transverse QPM in SE SHG. (a) Schematic representation of the integrand in the overlap integral. (b) SH growth through the film: solid curve, NL–L multilayer film; dashed curve, single-layer film; dotted curve, perfectly phase-matched film.

Fig. 9
Fig. 9

Possible structures for multilayer transverse QPM: (a) NL–L multilayer film, (b) reverse poling multilayer film, (c) heterophase multilayer film.

Fig. 10
Fig. 10

Apparatus used for measuring SE SHG.

Fig. 11
Fig. 11

Images of generated SE SH light. (a) SH signal (horizontal line) emanating from the DANS waveguide when viewed normal to the surface. (b) Fourier-transformed image of the SH light generated by mixing of different modes.  

Fig. 12
Fig. 12

Wavelength dispersion of G2 and Lmax for a DANS polymer film. Filled circles, G2 based on measured values; solid curve, G2 based on the fitted inhomogeneous dispersion model; dashed curve, G2 based on the fitted homogeneous dispersion model; open circles, Lmax from the measured values; dotted curve, Lmax based on the fitted inhomogeneous dispersion model. The shaded region indicates useful conversion. Note that Lmax is limited to 1 cm for practical devices.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

E±(x, z, t)=1/2yˆC±a±(z)fy±(x)exp[i(ωtβz)]+c.c.,
P(2)=0χ22(2)(2E+E-+E+2+E-2)
Ey+(2ω)=-ik0(2ω)a2C2TS,
S=- d˜22(x)fy(x)2n˜(2ω)(x) exp[k˜(2ω)(x)x]dx,
I(2ω)=ANLI+(ω)I-(ω),
ANL=0ωk0(2ω)nc(2ω)|C|4|TS|2
U+(z-z0)U-(z+z0)exp{i[2ωt-k(2ω)x]},
E(z)-|U+(z-z0)U-(z+z0)|2dz0.
P(t)-|U+(-z0+z)U-(-z0-z)|2dz,
sin θ12=β1-β2k(ω1+ω2).
Δλmin4λ2nL.
1Δωnπ - 1ω0n-ω+iΓn/2×exp-ω0n-ω0nΔωn2d(ω0n-ω0n),
W(ω˜)=iπ - exp(-t2)ω˜-t dt
iπΔωn Wpω-ω˜0nΔωnW˜n(pω),
χ(1)(ω)=nNfωΘ μ0n20 [W˜n(ω)+W˜n(-ω)],
d22(-2ω;ω, ω)
=12 Nf2ωfωfωΘ μ012Δμ11202 1ω [W˜(2ω)-W˜(-2ω)]-1ω-12(ω-iΓ1/2)[W˜(ω)-W˜(-ω)],
dN(t)dt=-γN(t),
dN(t)dt=-βbI(t)N(t),
N(t)=N0 exp-βb0tI(t)dt,
βb=ηb α1(ω)N0ω,
Λ=(β0-β1)zπ=2Δneffλ z,
Δnmin=4λL.
P(2ω)=K2k02|d22|2LmaxP2(ω),
HeffHmax={1-exp[-α(2ω)H]}α(2ω)Hmax=1

Metrics