Abstract

Efficient singly resonant oscillation near 1.3 μm and pump wavelength tuning are demonstrated for what is believed to be the first time in an organomineral crystal. An oscillation threshold of 6 MW cm-2 and a total conversion efficiency of 8% are achieved in a doubly noncritical configuration with respect to the crystal orientation and the signal wavelength. The performance and buildup time of the optical parametric oscillator have been considered and have been shown to benefit from injection seeding.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Byer and A. Piskarskas, J. Opt. Soc. Am. B 9, 1655, (1993); 9, 2146 (1993).
  2. See, for example, J. Zyss, ed., Molecular Nonlinear Optics: Materials, Physics and Devices (Academic, Boston, Mass., 1993); J. Phys. D 26, B198 (1993); S. X. Dou, D. Josse, and J. Zyss, J. Opt. Soc. Am. B 10, 1708 (1993).
    [CrossRef]
  3. R. Masse and J. Zyss, Mol. Eng. 1, 141 (1991); R. Masse, M. Bagieu-Beucher, J. Pecaut, J.-P. Levy, and J. Zyss, Nonlinear Opt. 5, 413 (1993).
    [CrossRef]
  4. Z. Kotler, R. Hierle, D. Josse, J. Zyss, and R. Masse, J. Opt. Soc. Am. B 9, 534 (1992).
    [CrossRef]
  5. D. Eimerl, S. Velsko, L. Davis, F. Wang, G. Loiacono, and G. Kennedy, IEEE J. Quantum Electron. 25, 179 (1989); C. B. Aakeroy, P. B. Hitchcock, B. D. Moyle, and K. R. Seddon, J. Chem. Soc. Chem. Commun. 23, 1856 (1989); H. O. Marcy, L. F. Warren, M. J. Rosker, P. Cunningham, C. A. Ebbers, L. E. Davis, and S. P. Velsko, in Conference on Lasers and Electo-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CFF6.
    [CrossRef]
  6. I. D. W. Samuel, B. Villacampa, D. Josse, S. Khodja, and J. Zyss, Appl. Phys. Lett. 66, 2019 (1995).
    [CrossRef]
  7. S. Khodja, D. Josse, I. D. W. Samuel, and J. Zyss, Appl. Phys. Lett. 67, 3841 (1995).
    [CrossRef]
  8. A. I. Kovrigin and R. L. Byer, IEEE J. Quantum Electron. 25, 384 (1969).
    [CrossRef]
  9. S. X. Dou, D. Josse, and J. Zyss, J. Opt. Soc. Am. B 9, 1312 (1992).
    [CrossRef]
  10. S. X. Dou, D. Josse, and J. Zyss, J. Opt. Soc. Am. B 10, 1708 (1993).
    [CrossRef]
  11. H. Kogelnik, Symposium on Optics (Brooklyn Polytechnic Institute, New York, 1964), Vol. 14, p. 333.
  12. G. D. Boyd and A. Ashkin, Phys. Rev. 168, 1064 (1966).
  13. R. Ashby, Phys. Rev. 187, 1062 (1969).
    [CrossRef]
  14. N. Horiuchi, F. Lefaucheux, M. C. Robert, D. Josse, S. Khodja, and J. Zyss, J. Cryst. Growth 147, 361 (1995).
    [CrossRef]
  15. R. L. Byer, in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, part B, pp. 587–702.
  16. T. Nishikawa and N. Uesugi, in Technical Digest, CLEO/Pacific Rim ’95 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), p. 128.
  17. N. Srinivasan, T. Kimura, H. Kiriyama, M. Ohmi, M. Yamanaka, Y. Izawa, S. Nakai, and C. Yamanaka, in Technical Digest, CLEO/Pacific Rim ’95 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), p. 129.
  18. J. E. Pearson, U. Ganiel, and A. Yariv, IEEE J. Quantum Electron. QE-5, 433 (1979)
  19. J. Zyss, Photonics Sci. News 2(4), 6 (1997).

1995

I. D. W. Samuel, B. Villacampa, D. Josse, S. Khodja, and J. Zyss, Appl. Phys. Lett. 66, 2019 (1995).
[CrossRef]

S. Khodja, D. Josse, I. D. W. Samuel, and J. Zyss, Appl. Phys. Lett. 67, 3841 (1995).
[CrossRef]

N. Horiuchi, F. Lefaucheux, M. C. Robert, D. Josse, S. Khodja, and J. Zyss, J. Cryst. Growth 147, 361 (1995).
[CrossRef]

1993

1992

1979

J. E. Pearson, U. Ganiel, and A. Yariv, IEEE J. Quantum Electron. QE-5, 433 (1979)

1969

A. I. Kovrigin and R. L. Byer, IEEE J. Quantum Electron. 25, 384 (1969).
[CrossRef]

R. Ashby, Phys. Rev. 187, 1062 (1969).
[CrossRef]

1966

G. D. Boyd and A. Ashkin, Phys. Rev. 168, 1064 (1966).

Ashby, R.

R. Ashby, Phys. Rev. 187, 1062 (1969).
[CrossRef]

Ashkin, A.

G. D. Boyd and A. Ashkin, Phys. Rev. 168, 1064 (1966).

Boyd, G. D.

G. D. Boyd and A. Ashkin, Phys. Rev. 168, 1064 (1966).

Byer, R. L.

A. I. Kovrigin and R. L. Byer, IEEE J. Quantum Electron. 25, 384 (1969).
[CrossRef]

Dou, S. X.

Ganiel, U.

J. E. Pearson, U. Ganiel, and A. Yariv, IEEE J. Quantum Electron. QE-5, 433 (1979)

Hierle, R.

Horiuchi, N.

N. Horiuchi, F. Lefaucheux, M. C. Robert, D. Josse, S. Khodja, and J. Zyss, J. Cryst. Growth 147, 361 (1995).
[CrossRef]

Josse, D.

N. Horiuchi, F. Lefaucheux, M. C. Robert, D. Josse, S. Khodja, and J. Zyss, J. Cryst. Growth 147, 361 (1995).
[CrossRef]

S. Khodja, D. Josse, I. D. W. Samuel, and J. Zyss, Appl. Phys. Lett. 67, 3841 (1995).
[CrossRef]

I. D. W. Samuel, B. Villacampa, D. Josse, S. Khodja, and J. Zyss, Appl. Phys. Lett. 66, 2019 (1995).
[CrossRef]

S. X. Dou, D. Josse, and J. Zyss, J. Opt. Soc. Am. B 10, 1708 (1993).
[CrossRef]

S. X. Dou, D. Josse, and J. Zyss, J. Opt. Soc. Am. B 9, 1312 (1992).
[CrossRef]

Z. Kotler, R. Hierle, D. Josse, J. Zyss, and R. Masse, J. Opt. Soc. Am. B 9, 534 (1992).
[CrossRef]

Khodja, S.

I. D. W. Samuel, B. Villacampa, D. Josse, S. Khodja, and J. Zyss, Appl. Phys. Lett. 66, 2019 (1995).
[CrossRef]

S. Khodja, D. Josse, I. D. W. Samuel, and J. Zyss, Appl. Phys. Lett. 67, 3841 (1995).
[CrossRef]

N. Horiuchi, F. Lefaucheux, M. C. Robert, D. Josse, S. Khodja, and J. Zyss, J. Cryst. Growth 147, 361 (1995).
[CrossRef]

Kotler, Z.

Kovrigin, A. I.

A. I. Kovrigin and R. L. Byer, IEEE J. Quantum Electron. 25, 384 (1969).
[CrossRef]

Lefaucheux, F.

N. Horiuchi, F. Lefaucheux, M. C. Robert, D. Josse, S. Khodja, and J. Zyss, J. Cryst. Growth 147, 361 (1995).
[CrossRef]

Masse, R.

Pearson, J. E.

J. E. Pearson, U. Ganiel, and A. Yariv, IEEE J. Quantum Electron. QE-5, 433 (1979)

Robert, M. C.

N. Horiuchi, F. Lefaucheux, M. C. Robert, D. Josse, S. Khodja, and J. Zyss, J. Cryst. Growth 147, 361 (1995).
[CrossRef]

Samuel, I. D. W.

S. Khodja, D. Josse, I. D. W. Samuel, and J. Zyss, Appl. Phys. Lett. 67, 3841 (1995).
[CrossRef]

I. D. W. Samuel, B. Villacampa, D. Josse, S. Khodja, and J. Zyss, Appl. Phys. Lett. 66, 2019 (1995).
[CrossRef]

Villacampa, B.

I. D. W. Samuel, B. Villacampa, D. Josse, S. Khodja, and J. Zyss, Appl. Phys. Lett. 66, 2019 (1995).
[CrossRef]

Yariv, A.

J. E. Pearson, U. Ganiel, and A. Yariv, IEEE J. Quantum Electron. QE-5, 433 (1979)

Zyss, J.

S. Khodja, D. Josse, I. D. W. Samuel, and J. Zyss, Appl. Phys. Lett. 67, 3841 (1995).
[CrossRef]

N. Horiuchi, F. Lefaucheux, M. C. Robert, D. Josse, S. Khodja, and J. Zyss, J. Cryst. Growth 147, 361 (1995).
[CrossRef]

I. D. W. Samuel, B. Villacampa, D. Josse, S. Khodja, and J. Zyss, Appl. Phys. Lett. 66, 2019 (1995).
[CrossRef]

S. X. Dou, D. Josse, and J. Zyss, J. Opt. Soc. Am. B 10, 1708 (1993).
[CrossRef]

S. X. Dou, D. Josse, and J. Zyss, J. Opt. Soc. Am. B 9, 1312 (1992).
[CrossRef]

Z. Kotler, R. Hierle, D. Josse, J. Zyss, and R. Masse, J. Opt. Soc. Am. B 9, 534 (1992).
[CrossRef]

Appl. Phys. Lett.

I. D. W. Samuel, B. Villacampa, D. Josse, S. Khodja, and J. Zyss, Appl. Phys. Lett. 66, 2019 (1995).
[CrossRef]

S. Khodja, D. Josse, I. D. W. Samuel, and J. Zyss, Appl. Phys. Lett. 67, 3841 (1995).
[CrossRef]

IEEE J. Quantum Electron.

A. I. Kovrigin and R. L. Byer, IEEE J. Quantum Electron. 25, 384 (1969).
[CrossRef]

J. E. Pearson, U. Ganiel, and A. Yariv, IEEE J. Quantum Electron. QE-5, 433 (1979)

J. Cryst. Growth

N. Horiuchi, F. Lefaucheux, M. C. Robert, D. Josse, S. Khodja, and J. Zyss, J. Cryst. Growth 147, 361 (1995).
[CrossRef]

J. Opt. Soc. Am. B

Phys. Rev.

G. D. Boyd and A. Ashkin, Phys. Rev. 168, 1064 (1966).

R. Ashby, Phys. Rev. 187, 1062 (1969).
[CrossRef]

Other

J. Zyss, Photonics Sci. News 2(4), 6 (1997).

R. L. Byer, in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, part B, pp. 587–702.

T. Nishikawa and N. Uesugi, in Technical Digest, CLEO/Pacific Rim ’95 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), p. 128.

N. Srinivasan, T. Kimura, H. Kiriyama, M. Ohmi, M. Yamanaka, Y. Izawa, S. Nakai, and C. Yamanaka, in Technical Digest, CLEO/Pacific Rim ’95 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), p. 129.

H. Kogelnik, Symposium on Optics (Brooklyn Polytechnic Institute, New York, 1964), Vol. 14, p. 333.

R. L. Byer and A. Piskarskas, J. Opt. Soc. Am. B 9, 1655, (1993); 9, 2146 (1993).

See, for example, J. Zyss, ed., Molecular Nonlinear Optics: Materials, Physics and Devices (Academic, Boston, Mass., 1993); J. Phys. D 26, B198 (1993); S. X. Dou, D. Josse, and J. Zyss, J. Opt. Soc. Am. B 10, 1708 (1993).
[CrossRef]

R. Masse and J. Zyss, Mol. Eng. 1, 141 (1991); R. Masse, M. Bagieu-Beucher, J. Pecaut, J.-P. Levy, and J. Zyss, Nonlinear Opt. 5, 413 (1993).
[CrossRef]

D. Eimerl, S. Velsko, L. Davis, F. Wang, G. Loiacono, and G. Kennedy, IEEE J. Quantum Electron. 25, 179 (1989); C. B. Aakeroy, P. B. Hitchcock, B. D. Moyle, and K. R. Seddon, J. Chem. Soc. Chem. Commun. 23, 1856 (1989); H. O. Marcy, L. F. Warren, M. J. Rosker, P. Cunningham, C. A. Ebbers, L. E. Davis, and S. P. Velsko, in Conference on Lasers and Electo-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CFF6.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the 2A5NPDP-based OPO: M’s, mirrors; L’s, lenses; S’s, dichroic mirrors; D, photodetector; OD, optical density; THG, third-harmonic generation; SHG, second-harmonic generation.

Fig. 2
Fig. 2

(a) Configuration of the experiment, showing the crystal orientation and the pump (Ep), signal (Es), and idler (Ei) polarizations. The crystal was rotated about its X axis. (b) Angle-tuning curves of the 2A5NPDP-based OPO at different pump wavelengths.

Fig. 3
Fig. 3

2A5NPDP-based OPO: experimental tuning of the output signal and idler wavelengths by variation of the pump wavelength.

Fig. 4
Fig. 4

Oscillation threshold of the singly resonant 2A5NPDP-based OPO as a function of crystal length at a pump wavelength of 590 nm.

Fig. 5
Fig. 5

Output energy of the idler wave versus tuning range for a pump energy of 4.6 mJ and a pump wavelength of 570 nm.

Fig. 6
Fig. 6

Output idler energy versus cavity length at two pump intensities.

Fig. 7
Fig. 7

OPO conversion efficiency at the idler wave as a function of the pump energy. The pump wavelength is 570 nm, and the corresponding idler is 1320 nm.

Fig. 8
Fig. 8

Signal and idler linewidths as a function of the pump wavelength for a pump energy three times above the oscillation threshold energy.

Fig. 9
Fig. 9

Comparison of the output idler energy from the OPO with and without injection seeding as a function of pump energy. The pump wavelength is 570 nm, and the cavity length is set at 8 mm.

Fig. 10
Fig. 10

Buildup time of the OPO divided by the duration of the pump pulse as a function of the cavity length at different pump intensities: solid curve, Ip=36 MW/cm2; dashed curve, Ip=19 MW/cm2.

Fig. 11
Fig. 11

Temporal pulse profile of the 2A5NPDP-based OPO. (a) Buildup time of the OPO as a function of cavity length. Lc is the OPO cavity length. (b) Comparison of the buildup time of the output idler pulses with and without injection for the same pump intensity. The pump wavelength is 570 nm and the idler wavelength is 1320 nm; the cavity length is 8 mm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ξiout=(ωi/ωs)τck=1NPsout(k),
Ej(x, y, z, t)=Ej(0)expx2+y2wj02-t2τj02-αjz,
Ps(m+1)Ps(m)
=2(πws0inτs0)2 exp(-4αl)RT4×-+-+ exp-x2+y2[ws0in(m)]2-tm2τs02×S(x, y)cosh[Γ0fm(x, y, l, t)]dxdy2, 
Γ0=κ(np/ωp)1/2Ep(0),
κ=12 ε0d15 cos(θ)μ00 ωsωiωpnsninp1/2;
f(x, y, l, t)=0l Ep(x, y, z, t)Ep(0) dz
S(x, y)=2πw0021/2 exp-x2+y2w002.
τth=Mτc=M(Lc/c),

Metrics