Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Pulse compression using fiber gratings as highly dispersive nonlinear elements

Not Accessible

Your library or personal account may give you access

Abstract

Pulse compressors rely on two separate sections. The first section is for bandwidth generation through self-phase modulation and chirp linearization through normal dispersion. In conventional compressors this first section consists of a normal dispersion fiber of appropriate length. The second section is for compensating this linear chirp through anomalous dispersion, typically a prism pair or grating pair. In this way a transform-limited input pulse is compressed into an almost-transform-limited pulse. This scheme is quite different from chirped fiber gratings that are used in reflection to compensate existing chirp: no extra bandwidth is generated and nonlinear effects are not necessary. We propose a scheme for optical pulse compression utilizing an apodized fiber grating in transmission as the nonlinear dispersive element for the first section of the compressor. Near the band edge, on the long-wavelength side of the stop band of the grating, the normal quadratic dispersion is orders of magnitude greater than in a standard optical fiber. Therefore the first section of the compressor may be scaled down in length and the constraints placed on these systems may be relaxed. In this paper we discuss the limitations and the design of such fiber-grating compressors. Analysis and numerical simulation show efficient pulse compression. Further numerical simulation reveals that sufficiently far from the band edge the fiber grating can be modeled as an effective homogeneous medium obeying the nonlinear Schrödinger equation.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Nearly chirp- and pedestal-free pulse compression in nonlinear fiber Bragg gratings

Qian Li, K. Senthilnathan, K. Nakkeeran, and P. K. A. Wai
J. Opt. Soc. Am. B 26(3) 432-443 (2009)

Adiabatic Bragg soliton compression in nonuniform grating structures

G. Lenz and B. J. Eggleton
J. Opt. Soc. Am. B 15(12) 2979-2985 (1998)

Compression of optical pulses spectrally broadened by self-phase modulation with a fiber Bragg grating in transmission

Benjamin J. Eggleton, Gadi Lenz, Richart. E. Slusher, and Natalia M. Litchinitser
Appl. Opt. 37(30) 7055-7061 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved