Abstract

The current theoretical understanding, in terms of numerical simulations and simple models, of the various modes of operation of the visible-range β-barium borate optical parametric oscillator pumped by the second harmonic of a femtosecond Ti:sapphire laser is analyzed and compared with experimental measurements. These observations include operation of the optical parametric oscillator without prisms and the associated self-compression that is due to cascaded second-order effects. The performance of the oscillator with group-delay-dispersion compensation prisms is described in terms of a simulation-based soliton model that determines the variation of pulse duration with group-delay dispersion, third-order dispersion, and wavelength.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. S. Wachman, D. C. Edelstein, and C. L. Tang, “Continuous-wave mode-locked and dispersion-compensated optical parametric oscillator,” Opt. Lett. 15, 136 (1990).
    [CrossRef]
  2. W. S. Pelouch, P. E. Powers, and C. L. Tang, “Ti:sapphire pumped high-repetition-rate femtosecond optical parametric oscillator,” Opt. Lett. 17, 1070 (1992).
    [CrossRef] [PubMed]
  3. Q. Fu, G. Mak, and H. M. van Driel, “High-power 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti:sapphire laser,” Opt. Lett. 17, 1006 (1992).
    [CrossRef] [PubMed]
  4. P. E. Powers, R. J. Ellingson, W. S. Pelouch, and C. L. Tang, “Recent advances of the Ti:sapphire pumped high-repetition-rate femtosecond optical parametric oscillator,” J. Opt. Soc. Am. B 10, 2162 (1993).
    [CrossRef]
  5. J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Characteristics of a noncritically phase-matched femtosecond optical parametric oscillator,” Opt. Commun. 104, 419 (1994).
    [CrossRef]
  6. P. E. Powers, S. Ramakrishna, C. L. Tang, and L. K. Cheng, “Optical parametric oscillation with KTiOAsO4,” Opt. Lett. 18, 1171 (1993).
    [CrossRef]
  7. D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Noncritically phase-matched Ti:sapphire pumped optical parametric oscillator based on RbTiOAsO4,” Opt. Lett. 20, 55 (1995).
    [CrossRef] [PubMed]
  8. D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High-repetition-rate femtosecond optical parametric oscillator based on KNbO3,” Opt. Lett. 20, 680 (1995).
    [CrossRef] [PubMed]
  9. D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, “Characterization and modeling of a non-collinearly phase-matched optical parametric oscillator based on KTA and operating to beyond 4 μm,” IEEE J. Quantum Electron. 34, 1 (1997).
    [CrossRef]
  10. H. M. van Driel, “Synchronously pumped optical parametric oscillators,” Appl. Phys. B 60, 411 (1995).
    [CrossRef]
  11. T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110, 638 (1994).
    [CrossRef]
  12. G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator,” Opt. Lett. 20, 1562 (1995).
    [CrossRef] [PubMed]
  13. F. Hache, M. Cavallari, and G. M. Gale, “Ultrafast visible optical parametric oscillators: a route to tunable sub-10 fs pulses?” in Ultrafast Phenomena X, P. F. Barbara, J. G. Fujimoto, W. H. Knox, and W. Zinth, eds., Vol. 62 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1996), p. 33.
    [CrossRef]
  14. R. J. Ellington and C. L. Tang, “High-power, high-repetition-rate femtosecond pulses tunable in the visible,” Opt. Lett. 18, 438 (1993).
    [CrossRef]
  15. D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Frequency doubled optical parametric oscillator based on RbTiOAsO4,” J. Opt. Soc. Am. B 12, 1157 (1995).
    [CrossRef]
  16. J. M. Sutherland, P. M. W. French, J. R. Taylor, and B. H. T. Chai, “Visible continuous-wave laser transitions in Pr3+:YLF and femtosecond pulse generation,” Opt. Lett. 21, 797 (1996).
    [CrossRef] [PubMed]
  17. F. Hache, A. Zéboulon, G. Gallot, and G. M. Gale, “Cascaded second-order effects in the femtosecond regime in βbarium borate: self-compression in a visible femtosecond optical parametric oscillator,” Opt. Lett. 20, 1566 (1995).
    [CrossRef]
  18. W. S. Pelouch, S. Herrera, L. A. Schlie, P. E. Powers, and C. L. Tang, “Femtosecond optical parametric oscillators,” in Generation, Amplification, and Measurement of Ultrashort Laser Pulses, R. R. Trebino and I. A. Walmsley, eds. Proc. SPIE 2116, 66 (1994).
    [CrossRef]
  19. Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).
  20. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).
  21. H. J. Bakker, P. C. M. Planken, and H. G. Muller, “Numerical calculation of frequency-conversion processes: a new approach,” J. Opt. Soc. Am. B 6, 1665 (1989).
    [CrossRef]
  22. G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Generation of highly-coherent tunable mid-infrared femtosecond pulses by parametric frequency-mixing at 82 MHz,” Opt. Commun. 119, 159 (1995).
    [CrossRef]
  23. R. C. Eckardt, H. Masuda, Y. X. Fon, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922 (1990).
    [CrossRef]
  24. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical and thermal properties of barium borate,” J. Appl. Phys. 62, 1968 (1987).
    [CrossRef]
  25. C. Flytzanis, in Quantum Electronics: A Treatise, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, part A.
  26. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28 (1992).
    [CrossRef] [PubMed]
  27. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
  28. G. Gallot, F. Hache, T. J. Driscoll, and G. M. Gale, “Cascade d’effets non-linéaires du second ordre en régime femtoseconde dans le BBO: autocompression dans un oscillateur paramétrique,” Ann. Phys. (Paris) 20, 639 (1995).
  29. G. M. Gale, M. Cavallari, and F. Hache, “Broad-bandwidth parametric amplification in the visible: femtosecond experiments and simulations,” submitted IEEE J. Sel. Topics Quantum Electron.
  30. A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, and R. Sipöcs, “Sub-10-fs mirror-dispersion controlled Ti:sapphire laser,” Opt. Lett. 20, 602 (1995).
    [CrossRef] [PubMed]
  31. W. Li, H.-G. Purucker, and A. Laubereau, “Polarization interference in femtosecond CARS,” Opt. Commun. 94, 300 (1992).
    [CrossRef]

1997 (1)

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, “Characterization and modeling of a non-collinearly phase-matched optical parametric oscillator based on KTA and operating to beyond 4 μm,” IEEE J. Quantum Electron. 34, 1 (1997).
[CrossRef]

1996 (1)

1995 (9)

H. M. van Driel, “Synchronously pumped optical parametric oscillators,” Appl. Phys. B 60, 411 (1995).
[CrossRef]

F. Hache, A. Zéboulon, G. Gallot, and G. M. Gale, “Cascaded second-order effects in the femtosecond regime in βbarium borate: self-compression in a visible femtosecond optical parametric oscillator,” Opt. Lett. 20, 1566 (1995).
[CrossRef]

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Generation of highly-coherent tunable mid-infrared femtosecond pulses by parametric frequency-mixing at 82 MHz,” Opt. Commun. 119, 159 (1995).
[CrossRef]

G. Gallot, F. Hache, T. J. Driscoll, and G. M. Gale, “Cascade d’effets non-linéaires du second ordre en régime femtoseconde dans le BBO: autocompression dans un oscillateur paramétrique,” Ann. Phys. (Paris) 20, 639 (1995).

D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Frequency doubled optical parametric oscillator based on RbTiOAsO4,” J. Opt. Soc. Am. B 12, 1157 (1995).
[CrossRef]

D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Noncritically phase-matched Ti:sapphire pumped optical parametric oscillator based on RbTiOAsO4,” Opt. Lett. 20, 55 (1995).
[CrossRef] [PubMed]

A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, and R. Sipöcs, “Sub-10-fs mirror-dispersion controlled Ti:sapphire laser,” Opt. Lett. 20, 602 (1995).
[CrossRef] [PubMed]

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High-repetition-rate femtosecond optical parametric oscillator based on KNbO3,” Opt. Lett. 20, 680 (1995).
[CrossRef] [PubMed]

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator,” Opt. Lett. 20, 1562 (1995).
[CrossRef] [PubMed]

1994 (3)

W. S. Pelouch, S. Herrera, L. A. Schlie, P. E. Powers, and C. L. Tang, “Femtosecond optical parametric oscillators,” in Generation, Amplification, and Measurement of Ultrashort Laser Pulses, R. R. Trebino and I. A. Walmsley, eds. Proc. SPIE 2116, 66 (1994).
[CrossRef]

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110, 638 (1994).
[CrossRef]

J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Characteristics of a noncritically phase-matched femtosecond optical parametric oscillator,” Opt. Commun. 104, 419 (1994).
[CrossRef]

1993 (3)

1992 (4)

1990 (2)

R. C. Eckardt, H. Masuda, Y. X. Fon, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

E. S. Wachman, D. C. Edelstein, and C. L. Tang, “Continuous-wave mode-locked and dispersion-compensated optical parametric oscillator,” Opt. Lett. 15, 136 (1990).
[CrossRef]

1989 (1)

1987 (1)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical and thermal properties of barium borate,” J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Bakker, H. J.

Bosshard, C.

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fon, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

Cavallari, M.

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Generation of highly-coherent tunable mid-infrared femtosecond pulses by parametric frequency-mixing at 82 MHz,” Opt. Commun. 119, 159 (1995).
[CrossRef]

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator,” Opt. Lett. 20, 1562 (1995).
[CrossRef] [PubMed]

Chai, B. H. T.

Cheng, L. K.

Davis, L.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical and thermal properties of barium borate,” J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

DeSalvo, R.

Driscoll, T. J.

G. Gallot, F. Hache, T. J. Driscoll, and G. M. Gale, “Cascade d’effets non-linéaires du second ordre en régime femtoseconde dans le BBO: autocompression dans un oscillateur paramétrique,” Ann. Phys. (Paris) 20, 639 (1995).

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Generation of highly-coherent tunable mid-infrared femtosecond pulses by parametric frequency-mixing at 82 MHz,” Opt. Commun. 119, 159 (1995).
[CrossRef]

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator,” Opt. Lett. 20, 1562 (1995).
[CrossRef] [PubMed]

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110, 638 (1994).
[CrossRef]

Dudley, J. M.

J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Characteristics of a noncritically phase-matched femtosecond optical parametric oscillator,” Opt. Commun. 104, 419 (1994).
[CrossRef]

Ebrahimzadeh, M.

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, “Characterization and modeling of a non-collinearly phase-matched optical parametric oscillator based on KTA and operating to beyond 4 μm,” IEEE J. Quantum Electron. 34, 1 (1997).
[CrossRef]

D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Frequency doubled optical parametric oscillator based on RbTiOAsO4,” J. Opt. Soc. Am. B 12, 1157 (1995).
[CrossRef]

D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Noncritically phase-matched Ti:sapphire pumped optical parametric oscillator based on RbTiOAsO4,” Opt. Lett. 20, 55 (1995).
[CrossRef] [PubMed]

J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Characteristics of a noncritically phase-matched femtosecond optical parametric oscillator,” Opt. Commun. 104, 419 (1994).
[CrossRef]

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fon, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

Edelstein, D. C.

Eimerl, D.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical and thermal properties of barium borate,” J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Ellingson, R. J.

Ellington, R. J.

Fon, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fon, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

French, P. M. W.

Fu, Q.

Gale, G. M.

G. Gallot, F. Hache, T. J. Driscoll, and G. M. Gale, “Cascade d’effets non-linéaires du second ordre en régime femtoseconde dans le BBO: autocompression dans un oscillateur paramétrique,” Ann. Phys. (Paris) 20, 639 (1995).

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Generation of highly-coherent tunable mid-infrared femtosecond pulses by parametric frequency-mixing at 82 MHz,” Opt. Commun. 119, 159 (1995).
[CrossRef]

F. Hache, A. Zéboulon, G. Gallot, and G. M. Gale, “Cascaded second-order effects in the femtosecond regime in βbarium borate: self-compression in a visible femtosecond optical parametric oscillator,” Opt. Lett. 20, 1566 (1995).
[CrossRef]

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator,” Opt. Lett. 20, 1562 (1995).
[CrossRef] [PubMed]

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110, 638 (1994).
[CrossRef]

Gallot, G.

F. Hache, A. Zéboulon, G. Gallot, and G. M. Gale, “Cascaded second-order effects in the femtosecond regime in βbarium borate: self-compression in a visible femtosecond optical parametric oscillator,” Opt. Lett. 20, 1566 (1995).
[CrossRef]

G. Gallot, F. Hache, T. J. Driscoll, and G. M. Gale, “Cascade d’effets non-linéaires du second ordre en régime femtoseconde dans le BBO: autocompression dans un oscillateur paramétrique,” Ann. Phys. (Paris) 20, 639 (1995).

Graham, E. K.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical and thermal properties of barium borate,” J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Günter, P.

Hache, F.

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator,” Opt. Lett. 20, 1562 (1995).
[CrossRef] [PubMed]

G. Gallot, F. Hache, T. J. Driscoll, and G. M. Gale, “Cascade d’effets non-linéaires du second ordre en régime femtoseconde dans le BBO: autocompression dans un oscillateur paramétrique,” Ann. Phys. (Paris) 20, 639 (1995).

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Generation of highly-coherent tunable mid-infrared femtosecond pulses by parametric frequency-mixing at 82 MHz,” Opt. Commun. 119, 159 (1995).
[CrossRef]

F. Hache, A. Zéboulon, G. Gallot, and G. M. Gale, “Cascaded second-order effects in the femtosecond regime in βbarium borate: self-compression in a visible femtosecond optical parametric oscillator,” Opt. Lett. 20, 1566 (1995).
[CrossRef]

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110, 638 (1994).
[CrossRef]

Hagan, D. J.

Herrera, S.

W. S. Pelouch, S. Herrera, L. A. Schlie, P. E. Powers, and C. L. Tang, “Femtosecond optical parametric oscillators,” in Generation, Amplification, and Measurement of Ultrashort Laser Pulses, R. R. Trebino and I. A. Walmsley, eds. Proc. SPIE 2116, 66 (1994).
[CrossRef]

Krausz, F.

Laubereau, A.

W. Li, H.-G. Purucker, and A. Laubereau, “Polarization interference in femtosecond CARS,” Opt. Commun. 94, 300 (1992).
[CrossRef]

Lenzner, M.

Li, W.

W. Li, H.-G. Purucker, and A. Laubereau, “Polarization interference in femtosecond CARS,” Opt. Commun. 94, 300 (1992).
[CrossRef]

Mak, G.

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fon, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

McGowan, C.

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, “Characterization and modeling of a non-collinearly phase-matched optical parametric oscillator based on KTA and operating to beyond 4 μm,” IEEE J. Quantum Electron. 34, 1 (1997).
[CrossRef]

Muller, H. G.

Pelouch, W. S.

Planken, P. C. M.

Powers, P. E.

Purucker, H.-G.

W. Li, H.-G. Purucker, and A. Laubereau, “Polarization interference in femtosecond CARS,” Opt. Commun. 94, 300 (1992).
[CrossRef]

Ramakrishna, S.

Reid, D. T.

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, “Characterization and modeling of a non-collinearly phase-matched optical parametric oscillator based on KTA and operating to beyond 4 μm,” IEEE J. Quantum Electron. 34, 1 (1997).
[CrossRef]

D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Frequency doubled optical parametric oscillator based on RbTiOAsO4,” J. Opt. Soc. Am. B 12, 1157 (1995).
[CrossRef]

D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Noncritically phase-matched Ti:sapphire pumped optical parametric oscillator based on RbTiOAsO4,” Opt. Lett. 20, 55 (1995).
[CrossRef] [PubMed]

J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Characteristics of a noncritically phase-matched femtosecond optical parametric oscillator,” Opt. Commun. 104, 419 (1994).
[CrossRef]

Schlie, L. A.

W. S. Pelouch, S. Herrera, L. A. Schlie, P. E. Powers, and C. L. Tang, “Femtosecond optical parametric oscillators,” in Generation, Amplification, and Measurement of Ultrashort Laser Pulses, R. R. Trebino and I. A. Walmsley, eds. Proc. SPIE 2116, 66 (1994).
[CrossRef]

Sheik-Bahae, M.

Sibbett, W.

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, “Characterization and modeling of a non-collinearly phase-matched optical parametric oscillator based on KTA and operating to beyond 4 μm,” IEEE J. Quantum Electron. 34, 1 (1997).
[CrossRef]

D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Frequency doubled optical parametric oscillator based on RbTiOAsO4,” J. Opt. Soc. Am. B 12, 1157 (1995).
[CrossRef]

D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Noncritically phase-matched Ti:sapphire pumped optical parametric oscillator based on RbTiOAsO4,” Opt. Lett. 20, 55 (1995).
[CrossRef] [PubMed]

J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Characteristics of a noncritically phase-matched femtosecond optical parametric oscillator,” Opt. Commun. 104, 419 (1994).
[CrossRef]

Sipöcs, R.

Spence, D. E.

Spielmann, C.

Stegeman, G.

Stingl, A.

Sutherland, J. M.

Tang, C. L.

Taylor, J. R.

van Driel, H. M.

Van Stryland, E. W.

Vanherzeele, H.

Velsko, S.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical and thermal properties of barium borate,” J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Wachman, E. S.

Wielandy, S.

Zalkin, A.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical and thermal properties of barium borate,” J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Zéboulon, A.

F. Hache, A. Zéboulon, G. Gallot, and G. M. Gale, “Cascaded second-order effects in the femtosecond regime in βbarium borate: self-compression in a visible femtosecond optical parametric oscillator,” Opt. Lett. 20, 1566 (1995).
[CrossRef]

Ann. Phys. (Paris) (1)

G. Gallot, F. Hache, T. J. Driscoll, and G. M. Gale, “Cascade d’effets non-linéaires du second ordre en régime femtoseconde dans le BBO: autocompression dans un oscillateur paramétrique,” Ann. Phys. (Paris) 20, 639 (1995).

Appl. Phys. B (1)

H. M. van Driel, “Synchronously pumped optical parametric oscillators,” Appl. Phys. B 60, 411 (1995).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, “Characterization and modeling of a non-collinearly phase-matched optical parametric oscillator based on KTA and operating to beyond 4 μm,” IEEE J. Quantum Electron. 34, 1 (1997).
[CrossRef]

R. C. Eckardt, H. Masuda, Y. X. Fon, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

J. Appl. Phys. (1)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical and thermal properties of barium borate,” J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (4)

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Generation of highly-coherent tunable mid-infrared femtosecond pulses by parametric frequency-mixing at 82 MHz,” Opt. Commun. 119, 159 (1995).
[CrossRef]

W. Li, H.-G. Purucker, and A. Laubereau, “Polarization interference in femtosecond CARS,” Opt. Commun. 94, 300 (1992).
[CrossRef]

J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Characteristics of a noncritically phase-matched femtosecond optical parametric oscillator,” Opt. Commun. 104, 419 (1994).
[CrossRef]

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110, 638 (1994).
[CrossRef]

Opt. Lett. (12)

F. Hache, A. Zéboulon, G. Gallot, and G. M. Gale, “Cascaded second-order effects in the femtosecond regime in βbarium borate: self-compression in a visible femtosecond optical parametric oscillator,” Opt. Lett. 20, 1566 (1995).
[CrossRef]

D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Noncritically phase-matched Ti:sapphire pumped optical parametric oscillator based on RbTiOAsO4,” Opt. Lett. 20, 55 (1995).
[CrossRef] [PubMed]

A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, and R. Sipöcs, “Sub-10-fs mirror-dispersion controlled Ti:sapphire laser,” Opt. Lett. 20, 602 (1995).
[CrossRef] [PubMed]

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High-repetition-rate femtosecond optical parametric oscillator based on KNbO3,” Opt. Lett. 20, 680 (1995).
[CrossRef] [PubMed]

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator,” Opt. Lett. 20, 1562 (1995).
[CrossRef] [PubMed]

J. M. Sutherland, P. M. W. French, J. R. Taylor, and B. H. T. Chai, “Visible continuous-wave laser transitions in Pr3+:YLF and femtosecond pulse generation,” Opt. Lett. 21, 797 (1996).
[CrossRef] [PubMed]

E. S. Wachman, D. C. Edelstein, and C. L. Tang, “Continuous-wave mode-locked and dispersion-compensated optical parametric oscillator,” Opt. Lett. 15, 136 (1990).
[CrossRef]

R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28 (1992).
[CrossRef] [PubMed]

Q. Fu, G. Mak, and H. M. van Driel, “High-power 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti:sapphire laser,” Opt. Lett. 17, 1006 (1992).
[CrossRef] [PubMed]

W. S. Pelouch, P. E. Powers, and C. L. Tang, “Ti:sapphire pumped high-repetition-rate femtosecond optical parametric oscillator,” Opt. Lett. 17, 1070 (1992).
[CrossRef] [PubMed]

R. J. Ellington and C. L. Tang, “High-power, high-repetition-rate femtosecond pulses tunable in the visible,” Opt. Lett. 18, 438 (1993).
[CrossRef]

P. E. Powers, S. Ramakrishna, C. L. Tang, and L. K. Cheng, “Optical parametric oscillation with KTiOAsO4,” Opt. Lett. 18, 1171 (1993).
[CrossRef]

Proc. SPIE (1)

W. S. Pelouch, S. Herrera, L. A. Schlie, P. E. Powers, and C. L. Tang, “Femtosecond optical parametric oscillators,” in Generation, Amplification, and Measurement of Ultrashort Laser Pulses, R. R. Trebino and I. A. Walmsley, eds. Proc. SPIE 2116, 66 (1994).
[CrossRef]

Other (6)

Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).

F. Hache, M. Cavallari, and G. M. Gale, “Ultrafast visible optical parametric oscillators: a route to tunable sub-10 fs pulses?” in Ultrafast Phenomena X, P. F. Barbara, J. G. Fujimoto, W. H. Knox, and W. Zinth, eds., Vol. 62 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1996), p. 33.
[CrossRef]

G. M. Gale, M. Cavallari, and F. Hache, “Broad-bandwidth parametric amplification in the visible: femtosecond experiments and simulations,” submitted IEEE J. Sel. Topics Quantum Electron.

C. Flytzanis, in Quantum Electronics: A Treatise, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, part A.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Variation of the normalized phase mismatch ΔkLc/π for a BBO crystal of length Lc=2 mm, with signal wavelength, in nanometers, for a noncollinear pumping geometry with the pump signal angle α=3.7° and the phase-matching angle θ=31.2° at 630 nm (solid curve). The parametric bandwidth (arrowed line) is 150 nm.

Fig. 2
Fig. 2

OPO schematic diagram: λ/2, π/2 three-mirror polarization rotator; SHG, second-harmonic generator; CM’s concave mirrors; PM, pump mirror; FM1, FM2, OPO signal focusing mirrors; HR1–HR3, high reflectors; HRlow, high reflector below the HR3–HR1 beam; P1, P2, fused-silica Brewster-angle prisms; OC, output coupler; PZT, piezoelectric stack support of the OC; double arrows, directions of prism adjustment.

Fig. 3
Fig. 3

Losses of the OPO cavity as a function of wavelength. High-reflectivity mirrors, dotted–dashed curve; 2% nominal output coupler, dotted curve; antireflection-coated BBO crystal, dashed curve. The total losses are shown by the solid curve.

Fig. 4
Fig. 4

Prismless OPO wavelength, in nanometers, as a function of cavity-length variation, in micrometers, for the 2% output coupler (filled squares) and for the 3% output coupler (filled circles). The calculated wavelength variation that is due to the GDD of a 3-mm BBO crystal is shown as a dotted curve.

Fig. 5
Fig. 5

Intracavity OPO pulse energy, in nanojoules, as a function of wavelength, in nanometers, for two phase-matching conditions: θ=31.2° (exact phase matching, filled squares) and θ=30° (filled diamonds). The curves are guides to the eye.

Fig. 6
Fig. 6

Measured OPO pulse duration, in femtoseconds, as a function of wavelength, in nanometers, for two phase-matching conditions: θ=31.2° (exact phase matching, filled squares) and θ=30° (filled circles). The curves are guides to the eye.

Fig. 7
Fig. 7

Spectra near 650 nm of the prismless OPO, where the BBO crystal phase-matching angle is below the optimum self-compression orientation (solid curve) and at optimum self-compression (dotted curve).

Fig. 8
Fig. 8

Intensity autocorrelation curve for the OPO signal far from the self-compression region (dotted curve) and for optimal self-compression (solid curve). The deduced pulse widths are 350 and 30 fs, respectively.

Fig. 9
Fig. 9

Optimum time delay, in femtoseconds, between pump and signal for maximum OPO gain as a function of OPO wavelength obtained from simulation (filled squares) and from a calculation assuming pump–signal synchronization at the crystal center (solid curve).

Fig. 10
Fig. 10

Theoretical intracavity energy of the pulses versus wavelength for four values of the losses: 5%, 7%, 11%, and 15%. The dotted curve gives the energy calculated by use of the known wavelength variation of total cavity loss.

Fig. 11
Fig. 11

Theoretical pulse width versus wavelength for four values of the losses: 5%, 7%, 11%, and 15%. The dotted curve gives the duration calculated by use of the known wavelength variation of total cavity loss.

Fig. 12
Fig. 12

Effective nonlinear refractive index of BBO n2eff normalized to the background Kerr n2 as a function of the angle of crystal misalignment Δθ, in degrees, from exact second-harmonic phase matching. Open circles show the results of a Z-scan experiment with 90-fs pulses at 800 nm. The longer solid curve was obtained from calculation (see text). Also shown are the measured fundamental depletion (filled circles) and calculation (shorter solid curve).

Fig. 13
Fig. 13

(a) Pulse duration, in femtoseconds, (b) time–bandwidth product ΔνΔτ, and (c) intracavity pulse energy, in nanojoules, of the OPO as a function of n2eff/n2. These curves were obtained by numerical simulation of the OPO at 10% total cavity losses (see text).

Fig. 14
Fig. 14

Variation of the group delay, in femtoseconds, with OPO wavelength, in nanometers, for the OPO with 380-mm prism spacing and the 3% output coupler. The experimental measurements are shown as filled squares, and the solid curve is obtained from a calculation incorporating the measured GDD of the prismless OPO.

Fig. 15
Fig. 15

Measured variation of the prism-compensated OPO pulse width, in femtoseconds, as a function of cavity GDD in square femtoseconds (filled squares). The dotted curve is a fit from a simple soliton model, and the solid curve is calculated with third-order dispersion taken into account (see text). The insets show the spectra corresponding to the points indicated by adjacent arrows.

Fig. 16
Fig. 16

Measured minimum OPO pulse duration, in femtoseconds, as a function of wavelength, in nanometers, for the cavity with 570-mm prism spacing (open rectangles) and with 380-mm prism spacing (filled triangles). Also shown are the times deduced by Fourier transformation of the spectra for the 570-mm prism spacing cavity (filled circles). The solid curve was calculated from a theoretical model (see text).

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

ωP=ωS+ωI,kP=kS+kI,
VS=VI cos(Ω),
α=arcsin1-VS2/VI21+2VSnSλI/VInIλS+ns2λI2/nI2λS21/2,
V=kω(k).
Vo-1=dko/dω,
Ve-1=dke/dω cos(ρ),
Ej(z, t)=e^jAj(z, t)exp[i(kjz-ωjt)]+c.c.,
ASz+1vS-1vP ASt-i2 2kSω2 2ASt2
=-αS2 AS+i ωSnSc χeff(2)APAI*+ i 3ωS2nSc χeff(3)AS(γSS|AS|2+2γSI|AI|2+ 2γSP|AP|2),
AIz+1vI-1vP AIt-i2 2kIω2 2AIt2
=-αI2 AI+i ωInIc χeff(2)APAS*+ i 3ωI2nIc χeff(3)AI(2γIS|AS|2+γII|AI|2+ 2γIP|AP|2),
APz-i2 2kPω2 2APt2
=-αP2 AP+i ωPnPc χeff(2)ASAI+ i 3ωP2nPc χeff(3)AP(2γPS|AS|2+ 2γPI|AI|2+γPP|AP|2).
BS(ω)z=iω1vS-1vPBS(ω)-i2 ω2 2kSω2 BS(ω)+iω2nSc PSNL(ω)-αSBS(ω),
BI(ω)z=iω1vI-1vPBI(ω)-i2 ω2 2kIω2 BI(ω)+iω2nIc PINL(ω)-αIBI(ω),
BP(ω)z=-i2 ω2 2kPω2 BP(ω)+iω2nPc PPNL(ω)-αPBP(ω),
B(z, ω)=A(z, t)exp(iωt)dt,
PNL(z, ω)=PNL(z, t)exp(iωt)dt.
τ=-λk0.57πn2effF,
τ=-γD,
τ=[(γD)2+ηD]1/2,
τ=-λD/(0.57πFn2Lc),
τ=-γD,
τTOD=-γDeff=-(2γϕπκ/τTOD)D,
τTOD2=ηD,
τ=[(γD)2+ηD]1/2,

Metrics