Abstract

Persistent spectral hole burning at temperatures up to 200 K was first time observed in Eu3+-ion-doped aluminosilicate glass. Glass having a composition of 2-wt. % Eu2O3-containing Al2O39SiO2 was prepared by heating the gel synthesized from metal alkoxides at 900 °C. The persistent spectral holes were burned in the 7F05D0 line of the Eu3+ ions by a dye laser with a bandwidth of ∼1 cm-1, of which width and depth were ∼3 cm-1 and ∼10% of the total fluorescence intensity, respectively, at 77 K. It was found that the hole depth decreased with increasing temperature and was erased above 220 K. The local environment of the Eu3+ ions in glass is discussed with regard to the fluorescence line narrowing spectra of the 5D07F1 transition.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Castro, D. Haarer, R. M. Macfarlane, and H. P. Trommsdorff, “Frequency selective oplical data storage system,” U.S. patent 4101976 (July 1978).
  2. R. Jaaniso and H. Bill, Europhys. Lett. 16, 569 (1991).
    [CrossRef]
  3. T. Izumitani and S. A. Payne, J. Lumin. 54, 337 (1993).
    [CrossRef]
  4. K. Hirao, S. Todoroki, D. H. Cho, and N. Soga, Opt. Lett. 18, 1586 (1993).
    [CrossRef] [PubMed]
  5. M. Nogami and Y. Abe, Appl. Phys. Lett. 64, 1227 (1994).
    [CrossRef]
  6. M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, Appl. Phys. Lett. 66, 2952 (1995).
    [CrossRef]
  7. M. Nogami, N. Hayakawa, N. Sugioka, and Y. Abe, J. Am. Ceram. Soc. 79, 1257 (1996).
    [CrossRef]
  8. H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, Phys. Rev. B 53, 8283 (1996).
    [CrossRef]
  9. Y. Mao, P. Gavrilovic, S. Singh, A. Bluce, and W. H. Grodkiewicz, Appl. Phys. Lett. 68, 3677 (1996).
    [CrossRef]
  10. M. Nogami and Y. Abe, Appl. Phys. Lett. (to be published).
  11. M. Nogami and Y. Abe, J. Non-Cryst. Solids 197, 73 (1996).
    [CrossRef]
  12. R. M. Macfarlane and R. M. Shelby, Opt. Commun. 45, 46 (1983).
    [CrossRef]
  13. Th. Schmidt, R. M. Macfarlane, and S. Volker, Phys. Rev. B 50, 15707 (1994).
    [CrossRef]
  14. D. M. Boye, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, Phys. Rev. B 54, 6263 (1996).
    [CrossRef]
  15. Z. Jiahua, H. Shihua, and Y. Jiaqi, Opt. Lett. 17, 1146 (1992).
    [CrossRef]
  16. C. Brecher and L. A. Riseberg, Phys. Rev. B 13, 81 (1976).
    [CrossRef]
  17. M. Tanaka and T. Kushida, Phys. Rev. B 49, 16917 (1994).
    [CrossRef]
  18. J. A. Capobianco, P. P. Proulx, M. Bettinnelli, and F. Negrosolo, Phys. Rev. B 42, 5936 (1990).
    [CrossRef]
  19. T. F. Belliveau and D. J. Simkin, J. Non-Cryst. Solids 110, 127 (1989).
    [CrossRef]
  20. G. Nishimura and T. Kushida, Phys. Rev. B 37, 9075 (1988).
    [CrossRef]
  21. T. F. Belliveau and D. J. Simkin, J. Non-Cryst. Solids 110, 127 (1989).
    [CrossRef]
  22. G. Nishimura and T. Kushida, Phys. Rev. B 37, 9075 (1988).
    [CrossRef]

1996 (5)

M. Nogami, N. Hayakawa, N. Sugioka, and Y. Abe, J. Am. Ceram. Soc. 79, 1257 (1996).
[CrossRef]

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, Phys. Rev. B 53, 8283 (1996).
[CrossRef]

Y. Mao, P. Gavrilovic, S. Singh, A. Bluce, and W. H. Grodkiewicz, Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

M. Nogami and Y. Abe, J. Non-Cryst. Solids 197, 73 (1996).
[CrossRef]

D. M. Boye, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, Phys. Rev. B 54, 6263 (1996).
[CrossRef]

1995 (1)

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

1994 (3)

Th. Schmidt, R. M. Macfarlane, and S. Volker, Phys. Rev. B 50, 15707 (1994).
[CrossRef]

M. Tanaka and T. Kushida, Phys. Rev. B 49, 16917 (1994).
[CrossRef]

M. Nogami and Y. Abe, Appl. Phys. Lett. 64, 1227 (1994).
[CrossRef]

1993 (2)

1992 (1)

1991 (1)

R. Jaaniso and H. Bill, Europhys. Lett. 16, 569 (1991).
[CrossRef]

1990 (1)

J. A. Capobianco, P. P. Proulx, M. Bettinnelli, and F. Negrosolo, Phys. Rev. B 42, 5936 (1990).
[CrossRef]

1989 (2)

T. F. Belliveau and D. J. Simkin, J. Non-Cryst. Solids 110, 127 (1989).
[CrossRef]

T. F. Belliveau and D. J. Simkin, J. Non-Cryst. Solids 110, 127 (1989).
[CrossRef]

1988 (2)

G. Nishimura and T. Kushida, Phys. Rev. B 37, 9075 (1988).
[CrossRef]

G. Nishimura and T. Kushida, Phys. Rev. B 37, 9075 (1988).
[CrossRef]

1983 (1)

R. M. Macfarlane and R. M. Shelby, Opt. Commun. 45, 46 (1983).
[CrossRef]

1976 (1)

C. Brecher and L. A. Riseberg, Phys. Rev. B 13, 81 (1976).
[CrossRef]

Abe, Y.

M. Nogami, N. Hayakawa, N. Sugioka, and Y. Abe, J. Am. Ceram. Soc. 79, 1257 (1996).
[CrossRef]

M. Nogami and Y. Abe, J. Non-Cryst. Solids 197, 73 (1996).
[CrossRef]

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

M. Nogami and Y. Abe, Appl. Phys. Lett. 64, 1227 (1994).
[CrossRef]

Belliveau, T. F.

T. F. Belliveau and D. J. Simkin, J. Non-Cryst. Solids 110, 127 (1989).
[CrossRef]

T. F. Belliveau and D. J. Simkin, J. Non-Cryst. Solids 110, 127 (1989).
[CrossRef]

Bettinnelli, M.

J. A. Capobianco, P. P. Proulx, M. Bettinnelli, and F. Negrosolo, Phys. Rev. B 42, 5936 (1990).
[CrossRef]

Bill, H.

R. Jaaniso and H. Bill, Europhys. Lett. 16, 569 (1991).
[CrossRef]

Bluce, A.

Y. Mao, P. Gavrilovic, S. Singh, A. Bluce, and W. H. Grodkiewicz, Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Boye, D. M.

D. M. Boye, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, Phys. Rev. B 54, 6263 (1996).
[CrossRef]

Brecher, C.

C. Brecher and L. A. Riseberg, Phys. Rev. B 13, 81 (1976).
[CrossRef]

Capobianco, J. A.

J. A. Capobianco, P. P. Proulx, M. Bettinnelli, and F. Negrosolo, Phys. Rev. B 42, 5936 (1990).
[CrossRef]

Cho, D. H.

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

K. Hirao, S. Todoroki, D. H. Cho, and N. Soga, Opt. Lett. 18, 1586 (1993).
[CrossRef] [PubMed]

Gavrilovic, P.

Y. Mao, P. Gavrilovic, S. Singh, A. Bluce, and W. H. Grodkiewicz, Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Grodkiewicz, W. H.

Y. Mao, P. Gavrilovic, S. Singh, A. Bluce, and W. H. Grodkiewicz, Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Hayakawa, N.

M. Nogami, N. Hayakawa, N. Sugioka, and Y. Abe, J. Am. Ceram. Soc. 79, 1257 (1996).
[CrossRef]

Hirao, K.

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

K. Hirao, S. Todoroki, D. H. Cho, and N. Soga, Opt. Lett. 18, 1586 (1993).
[CrossRef] [PubMed]

Ishigame, M.

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, Phys. Rev. B 53, 8283 (1996).
[CrossRef]

Izumitani, T.

T. Izumitani and S. A. Payne, J. Lumin. 54, 337 (1993).
[CrossRef]

Jaaniso, R.

R. Jaaniso and H. Bill, Europhys. Lett. 16, 569 (1991).
[CrossRef]

Jiahua, Z.

Jiaqi, Y.

Kushida, T.

M. Tanaka and T. Kushida, Phys. Rev. B 49, 16917 (1994).
[CrossRef]

G. Nishimura and T. Kushida, Phys. Rev. B 37, 9075 (1988).
[CrossRef]

G. Nishimura and T. Kushida, Phys. Rev. B 37, 9075 (1988).
[CrossRef]

Macfarlane, R. M.

D. M. Boye, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, Phys. Rev. B 54, 6263 (1996).
[CrossRef]

Th. Schmidt, R. M. Macfarlane, and S. Volker, Phys. Rev. B 50, 15707 (1994).
[CrossRef]

R. M. Macfarlane and R. M. Shelby, Opt. Commun. 45, 46 (1983).
[CrossRef]

Mao, Y.

Y. Mao, P. Gavrilovic, S. Singh, A. Bluce, and W. H. Grodkiewicz, Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Matsuo, S.

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, Phys. Rev. B 53, 8283 (1996).
[CrossRef]

Meltzer, R. S.

D. M. Boye, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, Phys. Rev. B 54, 6263 (1996).
[CrossRef]

Negrosolo, F.

J. A. Capobianco, P. P. Proulx, M. Bettinnelli, and F. Negrosolo, Phys. Rev. B 42, 5936 (1990).
[CrossRef]

Nishimura, G.

G. Nishimura and T. Kushida, Phys. Rev. B 37, 9075 (1988).
[CrossRef]

G. Nishimura and T. Kushida, Phys. Rev. B 37, 9075 (1988).
[CrossRef]

Nogami, M.

M. Nogami and Y. Abe, J. Non-Cryst. Solids 197, 73 (1996).
[CrossRef]

M. Nogami, N. Hayakawa, N. Sugioka, and Y. Abe, J. Am. Ceram. Soc. 79, 1257 (1996).
[CrossRef]

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

M. Nogami and Y. Abe, Appl. Phys. Lett. 64, 1227 (1994).
[CrossRef]

Payne, S. A.

T. Izumitani and S. A. Payne, J. Lumin. 54, 337 (1993).
[CrossRef]

Proulx, P. P.

J. A. Capobianco, P. P. Proulx, M. Bettinnelli, and F. Negrosolo, Phys. Rev. B 42, 5936 (1990).
[CrossRef]

Riseberg, L. A.

C. Brecher and L. A. Riseberg, Phys. Rev. B 13, 81 (1976).
[CrossRef]

Schmidt, Th.

Th. Schmidt, R. M. Macfarlane, and S. Volker, Phys. Rev. B 50, 15707 (1994).
[CrossRef]

Shelby, R. M.

R. M. Macfarlane and R. M. Shelby, Opt. Commun. 45, 46 (1983).
[CrossRef]

Shihua, H.

Simkin, D. J.

T. F. Belliveau and D. J. Simkin, J. Non-Cryst. Solids 110, 127 (1989).
[CrossRef]

T. F. Belliveau and D. J. Simkin, J. Non-Cryst. Solids 110, 127 (1989).
[CrossRef]

Singh, S.

Y. Mao, P. Gavrilovic, S. Singh, A. Bluce, and W. H. Grodkiewicz, Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Soga, N.

Sugioka, N.

M. Nogami, N. Hayakawa, N. Sugioka, and Y. Abe, J. Am. Ceram. Soc. 79, 1257 (1996).
[CrossRef]

Sun, Y.

D. M. Boye, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, Phys. Rev. B 54, 6263 (1996).
[CrossRef]

Tanaka, M.

M. Tanaka and T. Kushida, Phys. Rev. B 49, 16917 (1994).
[CrossRef]

Todoroki, S.

Volker, S.

Th. Schmidt, R. M. Macfarlane, and S. Volker, Phys. Rev. B 50, 15707 (1994).
[CrossRef]

Yagi, R.

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, Phys. Rev. B 53, 8283 (1996).
[CrossRef]

Yugami, H.

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, Phys. Rev. B 53, 8283 (1996).
[CrossRef]

Appl. Phys. Lett. (3)

M. Nogami and Y. Abe, Appl. Phys. Lett. 64, 1227 (1994).
[CrossRef]

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

Y. Mao, P. Gavrilovic, S. Singh, A. Bluce, and W. H. Grodkiewicz, Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Europhys. Lett. (1)

R. Jaaniso and H. Bill, Europhys. Lett. 16, 569 (1991).
[CrossRef]

J. Am. Ceram. Soc. (1)

M. Nogami, N. Hayakawa, N. Sugioka, and Y. Abe, J. Am. Ceram. Soc. 79, 1257 (1996).
[CrossRef]

J. Lumin. (1)

T. Izumitani and S. A. Payne, J. Lumin. 54, 337 (1993).
[CrossRef]

J. Non-Cryst. Solids (3)

M. Nogami and Y. Abe, J. Non-Cryst. Solids 197, 73 (1996).
[CrossRef]

T. F. Belliveau and D. J. Simkin, J. Non-Cryst. Solids 110, 127 (1989).
[CrossRef]

T. F. Belliveau and D. J. Simkin, J. Non-Cryst. Solids 110, 127 (1989).
[CrossRef]

Opt. Commun. (1)

R. M. Macfarlane and R. M. Shelby, Opt. Commun. 45, 46 (1983).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (8)

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, Phys. Rev. B 53, 8283 (1996).
[CrossRef]

C. Brecher and L. A. Riseberg, Phys. Rev. B 13, 81 (1976).
[CrossRef]

M. Tanaka and T. Kushida, Phys. Rev. B 49, 16917 (1994).
[CrossRef]

J. A. Capobianco, P. P. Proulx, M. Bettinnelli, and F. Negrosolo, Phys. Rev. B 42, 5936 (1990).
[CrossRef]

Th. Schmidt, R. M. Macfarlane, and S. Volker, Phys. Rev. B 50, 15707 (1994).
[CrossRef]

D. M. Boye, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, Phys. Rev. B 54, 6263 (1996).
[CrossRef]

G. Nishimura and T. Kushida, Phys. Rev. B 37, 9075 (1988).
[CrossRef]

G. Nishimura and T. Kushida, Phys. Rev. B 37, 9075 (1988).
[CrossRef]

Other (2)

G. Castro, D. Haarer, R. M. Macfarlane, and H. P. Trommsdorff, “Frequency selective oplical data storage system,” U.S. patent 4101976 (July 1978).

M. Nogami and Y. Abe, Appl. Phys. Lett. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fluorescence spectrum of Al2O39SiO2 glass containing 2-wt. % Eu2O3 heated in air at 900 °C. Spectrum was obtained with the 463-nm excitation wavelength of a Xe lamp at room temperature.

Fig. 2
Fig. 2

Hole-burning spectrum of the Eu3+-ion-doped Al2O3 9SiO2 glass at 77 K. Holes were burned at four wave numbers in the order of numbers shown. In the inset is shown the difference between the fluorescence intensities before and after laser irradiation. For the Eu3+-doped 2Na2OAl2O37SiO2 glass prepared by the melting method, the burning test was done by a laser with a power of ∼500 mW/mm2 for 1 h at 17 260 cm-1.

Fig. 3
Fig. 3

Hole depth burned as a function of burning power. Depth was normalized to the fluorescence intensity before burning.  

Fig. 4
Fig. 4

Hole-burning spectra of the Eu3+-ion-doped Al2O3 9SiO2 glass measured at 77, 130, and 190 K after burning at 77 K.

Fig. 5
Fig. 5

Hole area as a function of the cycling temperature. Hole area is normalized to unity at 77 K.

Fig. 6
Fig. 6

Fluorescence line narrowing spectra of the 5D07F1 transition of Eu3+-ion-doped Al2O39SiO2 glass. Numbers indicate the wave number of the excitation laser beam. Second-order crystal-field parameters B20 and B22 are a function of the 7F05D0 transition energy.

Metrics