Abstract

An improved design for optically addressed multiple-quantum-well spatial light modulators is reported. These integrated AlGaAs modulators are of high optical quality and are simple to fabricate. They exhibit excellent performance characteristics such as 10:1 reflection contrast ratio, 1.5% diffraction efficiency, 7-μm spatial resolution, and illumination sensitivity less than 1 μJ/cm2. Additionally, a new mode of operation is reported that dramatically improves the optical response of these devices at low frequencies. A new physical model is proposed that accurately describes the modulation process.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. D. Nolte, D. H. Olson, G. E. Doran, W. H. Knox, and A. M. Glass, “Resonant photodiffractive effect in semi-insulating multiple quantum wells,” J. Opt. Soc. Am. B 7, 2217–2225 (1990).
    [CrossRef]
  2. A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photo-refractive devices,” Appl. Phys. Lett. 62, 464–466 (1993).
    [CrossRef]
  3. J. A. Trezza, B. Pezeshki, M. C. Larson, S. M. Lord, and J. S. Harris, “High contrast asymmetric Fabry-Perot electro-absorption modulator with zero phase change,” Appl. Phys. Lett. 63, 452–454 (1993).
    [CrossRef]
  4. C. S. Kyono, K. Ikossi-Anastasiou, W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and A. J. Tsao, “GaAs/AlGaAs multi-quantum well resonant photo-refractive devices fabricated using epitaxial lift-off,” Appl. Phys. Lett. 64, 2244–2246 (1994).
    [CrossRef]
  5. W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044–1046 (1995).
    [CrossRef]
  6. W. S. Rabinovich, S. R. Bowman, R. Mahon, A. Walsh, C. L. Adler, D. S. Katzer, and K. Ikossi-Anastasiou, “Gray-scale response of multiple-quantum well spatial light modulators,” J. Opt. Soc. Am. B 13, 2235–2241 (1996).
    [CrossRef]
  7. S. R. Bowman, W. S. Rabinovich, D. S. Katzer, and H. B. Dietrich, “Pattern persistence in photorefractive multiple quantum wells,” in Spatial Light Modulators and Applications, Vol. 9 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 57–60.
  8. C. L. Adler, S. R. Bowman, and W. S. Rabinovich, “Computer simulations of a quantum-well optical correlator,” Opt. Commun. 136, 75–84 (1997).
    [CrossRef]
  9. S. R. Bowman, W. S. Rabinovich, C. S. Kyono, D. S. Katzer, and K. Ikossi-Anastasiou, “High resolution spatial light modulators using GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 65, 956–958 (1994).
    [CrossRef]
  10. P. Kit-Lai Yu and Pei-Chuang Chen, in Introduction to Semiconductor Technology: GaAs and Related Compounds, C. T. Wang, ed. (Wiley, New York, 1990), Chap. 9, pp. 481–511.
  11. D. D. Nolte, “Resolution of electro-optic spatial light modulators: the the role of lateral transport,” Opt. Commun. 92, 199–204 (1992).
    [CrossRef]
  12. L. Wang and G. Moddel, “Resolution limits from charge transport in optically addressed spatial light modulators,” J. Appl. Phys. 78, 6923–6935 (1995).
    [CrossRef]
  13. S. L. Smith and L. Hesselink, “Transport modeling of multiple-quantum-well optically addressed spatial light modulators,” J. Appl. Phys. 81, 2076–2088 (1997).
    [CrossRef]
  14. I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photo-refractive p-i-n diode quantum well spatial light modulator,” Appl. Phys. Lett. 67, 1408–1410 (1995).
    [CrossRef]
  15. P. Tayebati, C. Hantzis, and R. N. Sacks, “Monolithic p-i-n GaAlAs multiple quantum well photorefractive device,” Appl. Phys. Lett. 70, 691–693 (1997).
    [CrossRef]
  16. D. S. Gerber, R. Droopad, and G. N. Maracas, “A GaAs/AlGaAs asymmetric Fabry–Perot reflection modulator with very high contrast ratio,” IEEE Photonics Technol. Lett. 5, 55–58 (1993).
    [CrossRef]
  17. K.-K. Law, J. L. Merz, and L. A. Coldren, “Effects of layer thickness variations on the performance of asymmetric Fabry–Perot reflection modulators,” J. Appl. Phys. 72, 855–860 (1992).
    [CrossRef]

1997 (3)

C. L. Adler, S. R. Bowman, and W. S. Rabinovich, “Computer simulations of a quantum-well optical correlator,” Opt. Commun. 136, 75–84 (1997).
[CrossRef]

S. L. Smith and L. Hesselink, “Transport modeling of multiple-quantum-well optically addressed spatial light modulators,” J. Appl. Phys. 81, 2076–2088 (1997).
[CrossRef]

P. Tayebati, C. Hantzis, and R. N. Sacks, “Monolithic p-i-n GaAlAs multiple quantum well photorefractive device,” Appl. Phys. Lett. 70, 691–693 (1997).
[CrossRef]

1996 (1)

1995 (3)

L. Wang and G. Moddel, “Resolution limits from charge transport in optically addressed spatial light modulators,” J. Appl. Phys. 78, 6923–6935 (1995).
[CrossRef]

W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044–1046 (1995).
[CrossRef]

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photo-refractive p-i-n diode quantum well spatial light modulator,” Appl. Phys. Lett. 67, 1408–1410 (1995).
[CrossRef]

1994 (2)

S. R. Bowman, W. S. Rabinovich, C. S. Kyono, D. S. Katzer, and K. Ikossi-Anastasiou, “High resolution spatial light modulators using GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 65, 956–958 (1994).
[CrossRef]

C. S. Kyono, K. Ikossi-Anastasiou, W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and A. J. Tsao, “GaAs/AlGaAs multi-quantum well resonant photo-refractive devices fabricated using epitaxial lift-off,” Appl. Phys. Lett. 64, 2244–2246 (1994).
[CrossRef]

1993 (3)

D. S. Gerber, R. Droopad, and G. N. Maracas, “A GaAs/AlGaAs asymmetric Fabry–Perot reflection modulator with very high contrast ratio,” IEEE Photonics Technol. Lett. 5, 55–58 (1993).
[CrossRef]

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photo-refractive devices,” Appl. Phys. Lett. 62, 464–466 (1993).
[CrossRef]

J. A. Trezza, B. Pezeshki, M. C. Larson, S. M. Lord, and J. S. Harris, “High contrast asymmetric Fabry-Perot electro-absorption modulator with zero phase change,” Appl. Phys. Lett. 63, 452–454 (1993).
[CrossRef]

1992 (2)

K.-K. Law, J. L. Merz, and L. A. Coldren, “Effects of layer thickness variations on the performance of asymmetric Fabry–Perot reflection modulators,” J. Appl. Phys. 72, 855–860 (1992).
[CrossRef]

D. D. Nolte, “Resolution of electro-optic spatial light modulators: the the role of lateral transport,” Opt. Commun. 92, 199–204 (1992).
[CrossRef]

1990 (1)

Adler, C. L.

Bowman, S. R.

C. L. Adler, S. R. Bowman, and W. S. Rabinovich, “Computer simulations of a quantum-well optical correlator,” Opt. Commun. 136, 75–84 (1997).
[CrossRef]

W. S. Rabinovich, S. R. Bowman, R. Mahon, A. Walsh, C. L. Adler, D. S. Katzer, and K. Ikossi-Anastasiou, “Gray-scale response of multiple-quantum well spatial light modulators,” J. Opt. Soc. Am. B 13, 2235–2241 (1996).
[CrossRef]

W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044–1046 (1995).
[CrossRef]

S. R. Bowman, W. S. Rabinovich, C. S. Kyono, D. S. Katzer, and K. Ikossi-Anastasiou, “High resolution spatial light modulators using GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 65, 956–958 (1994).
[CrossRef]

C. S. Kyono, K. Ikossi-Anastasiou, W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and A. J. Tsao, “GaAs/AlGaAs multi-quantum well resonant photo-refractive devices fabricated using epitaxial lift-off,” Appl. Phys. Lett. 64, 2244–2246 (1994).
[CrossRef]

Chiu, T. H.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photo-refractive devices,” Appl. Phys. Lett. 62, 464–466 (1993).
[CrossRef]

Coldren, L. A.

K.-K. Law, J. L. Merz, and L. A. Coldren, “Effects of layer thickness variations on the performance of asymmetric Fabry–Perot reflection modulators,” J. Appl. Phys. 72, 855–860 (1992).
[CrossRef]

Doran, G. E.

Droopad, R.

D. S. Gerber, R. Droopad, and G. N. Maracas, “A GaAs/AlGaAs asymmetric Fabry–Perot reflection modulator with very high contrast ratio,” IEEE Photonics Technol. Lett. 5, 55–58 (1993).
[CrossRef]

Gerber, D. S.

D. S. Gerber, R. Droopad, and G. N. Maracas, “A GaAs/AlGaAs asymmetric Fabry–Perot reflection modulator with very high contrast ratio,” IEEE Photonics Technol. Lett. 5, 55–58 (1993).
[CrossRef]

Glass, A. M.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photo-refractive devices,” Appl. Phys. Lett. 62, 464–466 (1993).
[CrossRef]

D. D. Nolte, D. H. Olson, G. E. Doran, W. H. Knox, and A. M. Glass, “Resonant photodiffractive effect in semi-insulating multiple quantum wells,” J. Opt. Soc. Am. B 7, 2217–2225 (1990).
[CrossRef]

Hantzis, C.

P. Tayebati, C. Hantzis, and R. N. Sacks, “Monolithic p-i-n GaAlAs multiple quantum well photorefractive device,” Appl. Phys. Lett. 70, 691–693 (1997).
[CrossRef]

Harris, J. S.

J. A. Trezza, B. Pezeshki, M. C. Larson, S. M. Lord, and J. S. Harris, “High contrast asymmetric Fabry-Perot electro-absorption modulator with zero phase change,” Appl. Phys. Lett. 63, 452–454 (1993).
[CrossRef]

Hesselink, L.

S. L. Smith and L. Hesselink, “Transport modeling of multiple-quantum-well optically addressed spatial light modulators,” J. Appl. Phys. 81, 2076–2088 (1997).
[CrossRef]

Ikossi-Anastasiou, K.

W. S. Rabinovich, S. R. Bowman, R. Mahon, A. Walsh, C. L. Adler, D. S. Katzer, and K. Ikossi-Anastasiou, “Gray-scale response of multiple-quantum well spatial light modulators,” J. Opt. Soc. Am. B 13, 2235–2241 (1996).
[CrossRef]

C. S. Kyono, K. Ikossi-Anastasiou, W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and A. J. Tsao, “GaAs/AlGaAs multi-quantum well resonant photo-refractive devices fabricated using epitaxial lift-off,” Appl. Phys. Lett. 64, 2244–2246 (1994).
[CrossRef]

S. R. Bowman, W. S. Rabinovich, C. S. Kyono, D. S. Katzer, and K. Ikossi-Anastasiou, “High resolution spatial light modulators using GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 65, 956–958 (1994).
[CrossRef]

Katzer, D. S.

W. S. Rabinovich, S. R. Bowman, R. Mahon, A. Walsh, C. L. Adler, D. S. Katzer, and K. Ikossi-Anastasiou, “Gray-scale response of multiple-quantum well spatial light modulators,” J. Opt. Soc. Am. B 13, 2235–2241 (1996).
[CrossRef]

W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044–1046 (1995).
[CrossRef]

S. R. Bowman, W. S. Rabinovich, C. S. Kyono, D. S. Katzer, and K. Ikossi-Anastasiou, “High resolution spatial light modulators using GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 65, 956–958 (1994).
[CrossRef]

C. S. Kyono, K. Ikossi-Anastasiou, W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and A. J. Tsao, “GaAs/AlGaAs multi-quantum well resonant photo-refractive devices fabricated using epitaxial lift-off,” Appl. Phys. Lett. 64, 2244–2246 (1994).
[CrossRef]

Knox, W. H.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photo-refractive devices,” Appl. Phys. Lett. 62, 464–466 (1993).
[CrossRef]

D. D. Nolte, D. H. Olson, G. E. Doran, W. H. Knox, and A. M. Glass, “Resonant photodiffractive effect in semi-insulating multiple quantum wells,” J. Opt. Soc. Am. B 7, 2217–2225 (1990).
[CrossRef]

Kwolek, K. M.

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photo-refractive p-i-n diode quantum well spatial light modulator,” Appl. Phys. Lett. 67, 1408–1410 (1995).
[CrossRef]

Kyono, C. S.

W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044–1046 (1995).
[CrossRef]

S. R. Bowman, W. S. Rabinovich, C. S. Kyono, D. S. Katzer, and K. Ikossi-Anastasiou, “High resolution spatial light modulators using GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 65, 956–958 (1994).
[CrossRef]

C. S. Kyono, K. Ikossi-Anastasiou, W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and A. J. Tsao, “GaAs/AlGaAs multi-quantum well resonant photo-refractive devices fabricated using epitaxial lift-off,” Appl. Phys. Lett. 64, 2244–2246 (1994).
[CrossRef]

Lahiri, I.

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photo-refractive p-i-n diode quantum well spatial light modulator,” Appl. Phys. Lett. 67, 1408–1410 (1995).
[CrossRef]

Larson, M. C.

J. A. Trezza, B. Pezeshki, M. C. Larson, S. M. Lord, and J. S. Harris, “High contrast asymmetric Fabry-Perot electro-absorption modulator with zero phase change,” Appl. Phys. Lett. 63, 452–454 (1993).
[CrossRef]

Law, K.-K.

K.-K. Law, J. L. Merz, and L. A. Coldren, “Effects of layer thickness variations on the performance of asymmetric Fabry–Perot reflection modulators,” J. Appl. Phys. 72, 855–860 (1992).
[CrossRef]

Lord, S. M.

J. A. Trezza, B. Pezeshki, M. C. Larson, S. M. Lord, and J. S. Harris, “High contrast asymmetric Fabry-Perot electro-absorption modulator with zero phase change,” Appl. Phys. Lett. 63, 452–454 (1993).
[CrossRef]

Mahon, R.

Maracas, G. N.

D. S. Gerber, R. Droopad, and G. N. Maracas, “A GaAs/AlGaAs asymmetric Fabry–Perot reflection modulator with very high contrast ratio,” IEEE Photonics Technol. Lett. 5, 55–58 (1993).
[CrossRef]

Melloch, M. R.

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photo-refractive p-i-n diode quantum well spatial light modulator,” Appl. Phys. Lett. 67, 1408–1410 (1995).
[CrossRef]

Merz, J. L.

K.-K. Law, J. L. Merz, and L. A. Coldren, “Effects of layer thickness variations on the performance of asymmetric Fabry–Perot reflection modulators,” J. Appl. Phys. 72, 855–860 (1992).
[CrossRef]

Moddel, G.

L. Wang and G. Moddel, “Resolution limits from charge transport in optically addressed spatial light modulators,” J. Appl. Phys. 78, 6923–6935 (1995).
[CrossRef]

Nolte, D. D.

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photo-refractive p-i-n diode quantum well spatial light modulator,” Appl. Phys. Lett. 67, 1408–1410 (1995).
[CrossRef]

D. D. Nolte, “Resolution of electro-optic spatial light modulators: the the role of lateral transport,” Opt. Commun. 92, 199–204 (1992).
[CrossRef]

D. D. Nolte, D. H. Olson, G. E. Doran, W. H. Knox, and A. M. Glass, “Resonant photodiffractive effect in semi-insulating multiple quantum wells,” J. Opt. Soc. Am. B 7, 2217–2225 (1990).
[CrossRef]

O’Bryan, H. M.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photo-refractive devices,” Appl. Phys. Lett. 62, 464–466 (1993).
[CrossRef]

Olson, D. H.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photo-refractive devices,” Appl. Phys. Lett. 62, 464–466 (1993).
[CrossRef]

D. D. Nolte, D. H. Olson, G. E. Doran, W. H. Knox, and A. M. Glass, “Resonant photodiffractive effect in semi-insulating multiple quantum wells,” J. Opt. Soc. Am. B 7, 2217–2225 (1990).
[CrossRef]

Partovi, A.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photo-refractive devices,” Appl. Phys. Lett. 62, 464–466 (1993).
[CrossRef]

Pezeshki, B.

J. A. Trezza, B. Pezeshki, M. C. Larson, S. M. Lord, and J. S. Harris, “High contrast asymmetric Fabry-Perot electro-absorption modulator with zero phase change,” Appl. Phys. Lett. 63, 452–454 (1993).
[CrossRef]

Rabinovich, W. S.

C. L. Adler, S. R. Bowman, and W. S. Rabinovich, “Computer simulations of a quantum-well optical correlator,” Opt. Commun. 136, 75–84 (1997).
[CrossRef]

W. S. Rabinovich, S. R. Bowman, R. Mahon, A. Walsh, C. L. Adler, D. S. Katzer, and K. Ikossi-Anastasiou, “Gray-scale response of multiple-quantum well spatial light modulators,” J. Opt. Soc. Am. B 13, 2235–2241 (1996).
[CrossRef]

W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044–1046 (1995).
[CrossRef]

S. R. Bowman, W. S. Rabinovich, C. S. Kyono, D. S. Katzer, and K. Ikossi-Anastasiou, “High resolution spatial light modulators using GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 65, 956–958 (1994).
[CrossRef]

C. S. Kyono, K. Ikossi-Anastasiou, W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and A. J. Tsao, “GaAs/AlGaAs multi-quantum well resonant photo-refractive devices fabricated using epitaxial lift-off,” Appl. Phys. Lett. 64, 2244–2246 (1994).
[CrossRef]

Sacks, R. N.

P. Tayebati, C. Hantzis, and R. N. Sacks, “Monolithic p-i-n GaAlAs multiple quantum well photorefractive device,” Appl. Phys. Lett. 70, 691–693 (1997).
[CrossRef]

Smith, S. L.

S. L. Smith and L. Hesselink, “Transport modeling of multiple-quantum-well optically addressed spatial light modulators,” J. Appl. Phys. 81, 2076–2088 (1997).
[CrossRef]

Tayebati, P.

P. Tayebati, C. Hantzis, and R. N. Sacks, “Monolithic p-i-n GaAlAs multiple quantum well photorefractive device,” Appl. Phys. Lett. 70, 691–693 (1997).
[CrossRef]

Trezza, J. A.

J. A. Trezza, B. Pezeshki, M. C. Larson, S. M. Lord, and J. S. Harris, “High contrast asymmetric Fabry-Perot electro-absorption modulator with zero phase change,” Appl. Phys. Lett. 63, 452–454 (1993).
[CrossRef]

Tsao, A. J.

C. S. Kyono, K. Ikossi-Anastasiou, W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and A. J. Tsao, “GaAs/AlGaAs multi-quantum well resonant photo-refractive devices fabricated using epitaxial lift-off,” Appl. Phys. Lett. 64, 2244–2246 (1994).
[CrossRef]

Walsh, A.

Wang, L.

L. Wang and G. Moddel, “Resolution limits from charge transport in optically addressed spatial light modulators,” J. Appl. Phys. 78, 6923–6935 (1995).
[CrossRef]

Zydzik, G. J.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photo-refractive devices,” Appl. Phys. Lett. 62, 464–466 (1993).
[CrossRef]

Appl. Phys. Lett. (7)

S. R. Bowman, W. S. Rabinovich, C. S. Kyono, D. S. Katzer, and K. Ikossi-Anastasiou, “High resolution spatial light modulators using GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 65, 956–958 (1994).
[CrossRef]

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photo-refractive p-i-n diode quantum well spatial light modulator,” Appl. Phys. Lett. 67, 1408–1410 (1995).
[CrossRef]

P. Tayebati, C. Hantzis, and R. N. Sacks, “Monolithic p-i-n GaAlAs multiple quantum well photorefractive device,” Appl. Phys. Lett. 70, 691–693 (1997).
[CrossRef]

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photo-refractive devices,” Appl. Phys. Lett. 62, 464–466 (1993).
[CrossRef]

J. A. Trezza, B. Pezeshki, M. C. Larson, S. M. Lord, and J. S. Harris, “High contrast asymmetric Fabry-Perot electro-absorption modulator with zero phase change,” Appl. Phys. Lett. 63, 452–454 (1993).
[CrossRef]

C. S. Kyono, K. Ikossi-Anastasiou, W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and A. J. Tsao, “GaAs/AlGaAs multi-quantum well resonant photo-refractive devices fabricated using epitaxial lift-off,” Appl. Phys. Lett. 64, 2244–2246 (1994).
[CrossRef]

W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044–1046 (1995).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

D. S. Gerber, R. Droopad, and G. N. Maracas, “A GaAs/AlGaAs asymmetric Fabry–Perot reflection modulator with very high contrast ratio,” IEEE Photonics Technol. Lett. 5, 55–58 (1993).
[CrossRef]

J. Appl. Phys. (3)

K.-K. Law, J. L. Merz, and L. A. Coldren, “Effects of layer thickness variations on the performance of asymmetric Fabry–Perot reflection modulators,” J. Appl. Phys. 72, 855–860 (1992).
[CrossRef]

L. Wang and G. Moddel, “Resolution limits from charge transport in optically addressed spatial light modulators,” J. Appl. Phys. 78, 6923–6935 (1995).
[CrossRef]

S. L. Smith and L. Hesselink, “Transport modeling of multiple-quantum-well optically addressed spatial light modulators,” J. Appl. Phys. 81, 2076–2088 (1997).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

D. D. Nolte, “Resolution of electro-optic spatial light modulators: the the role of lateral transport,” Opt. Commun. 92, 199–204 (1992).
[CrossRef]

C. L. Adler, S. R. Bowman, and W. S. Rabinovich, “Computer simulations of a quantum-well optical correlator,” Opt. Commun. 136, 75–84 (1997).
[CrossRef]

Other (2)

S. R. Bowman, W. S. Rabinovich, D. S. Katzer, and H. B. Dietrich, “Pattern persistence in photorefractive multiple quantum wells,” in Spatial Light Modulators and Applications, Vol. 9 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 57–60.

P. Kit-Lai Yu and Pei-Chuang Chen, in Introduction to Semiconductor Technology: GaAs and Related Compounds, C. T. Wang, ed. (Wiley, New York, 1990), Chap. 9, pp. 481–511.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram of the integrated OASLM device with the following layer structure: (a) p-doped conducting layer; (b) free-carrier trapping layers; (c) intrinsic MQW, (d) n-doped Bragg mirror, and (e) n-doped GaAs wafer. Also shown are the (f) incident probe beam, (g) modulated reflection beams, and (h) diffracted beams.

Fig. 2
Fig. 2

Low-frequency room-temperature dark current of an 8 mm×8 mm OASLM.

Fig. 3
Fig. 3

Electroreflective contrast spectra of the OASLM with a 0–20-V reverse-biased 50-kHz square wave for several angles of incidence. The reported measurements are for the full aperture of an 8 mm×8 mm device.

Fig. 4
Fig. 4

Electroreflective contrast modulation at 10 kHz. The reported measurements are for the full aperture of an 8 mm×8 mm device.

Fig. 5
Fig. 5

Comparison of the image fidelity of the OASLM as described in the text.

Fig. 6
Fig. 6

Temporal character of the photorefractive diffraction from the OASLM for pulsed bias voltages of (a) 10 V, (b) 15 V, and (c) 18 V.

Fig. 7
Fig. 7

Peak transient diffraction efficiency of the OASLM operating in the capacitive regime. Here the interference pattern had a spatial period of 14 μm and the probe wavelength was 856 nm.

Fig. 8
Fig. 8

Diffraction response as a function of the frequency of the applied square-wave voltage.

Fig. 9
Fig. 9

Steady-state diffraction efficiency of the OASLM operating in the photoconductive regime. Experimental conditions were identical to those in Fig. 6.

Fig. 10
Fig. 10

Integrated incident energy density necessary to produce the peak capacitive-regime diffractive response.

Fig. 11
Fig. 11

Spatial-resolution dependence of the diffraction efficiency in the photorefractive regimes described in the text. The capacitive regime was measured with 20 V of reverse bias, and the photoconductive regime was measured with 18 V of reverse bias.

Fig. 12
Fig. 12

Numerical simulations of the diffraction experiments shown in Fig. 6 showing (a) capacitive regime at -10-V bias, (b) intermediate regime at -15-V bias, and (c) photoconductive regime at -18-V bias.

Fig. 13
Fig. 13

Dark-current data from Fig. 2 (solid curves) compared with calculated photocurrent at optimal steady-state diffraction from Fig. 9 (dots).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

contrast=(Rv-R0)R0,
σ(x, t)=τ2 [Jp(x)-Jd]1-exp-tτ.
Eqw(x, t)=Eap(t)-σ(x, t)ε,
n(x, t)=n0+Δn1+Eqw(x, t)Ec4,
DE(t)=100%2dqwλ 02π sin(x)n(x, t)dx2.

Metrics