Abstract

Absolute instabilities of counterpropagating pump beams in a dispersive Kerr medium, placed inside a Fabry–Perot cavity, are analytically studied by use of the analysis and the results of part I [J. Opt. Soc. B 14, 607 (1998)]. Our approach allows characterization of such a complicated nonlinear system in terms of a doubly resonant optical parametric oscillator. We consider the growth of modulation-instability sidebands associated with each pump beam when weak probe signals are injected through one of the mirrors of the Fabry–Perot cavity. The results are used to obtain the threshold condition for the onset of the absolute instability and the growth rate for the unstable sidebands in the above-threshold regime. As expected, the well-known Ikeda instability is recovered at low modulation frequencies. The effects of the group-velocity dispersion are found to become quite important at high modulation frequencies. Although the absolute instability dominates in the anomalous-dispersion regime, it exists even in the normal-dispersion regime of the nonlinear medium. Below the instability threshold, our analysis provides analytic expressions for the probe transmittivity and the reflectivity of the phase-conjugated signal that is generated through a four-wave-mixing process.

© 1998 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temporal modulation instabilities of counterpropagating waves in a finite dispersive Kerr medium. I. Theoretical model and analysis

M. Yu, C. J. McKinstrie, and Govind P. Agrawal
J. Opt. Soc. Am. B 15(2) 607-616 (1998)

Instabilities and amplification of counterpropagating waves in a Kerr nonlinear medium

C. T. Law and A. E. Kaplan
J. Opt. Soc. Am. B 8(1) 58-67 (1991)

Transverse modulational instability of counterpropagating light waves

G. G. Luther and C. J. McKinstrie
J. Opt. Soc. Am. B 9(7) 1047-1060 (1992)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (42)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription