Abstract

The equilibrium position of a low-index particle in an optical-vortex trap was experimentally measured for two different systems: a buoyant hollow glass sphere in water and a density-matched water droplet in acetophenone. Vortex traps are the only known static, single-beam configurations allowing three-dimensional trapping of such particles in the size range of 2–50 μm. The trap consists of a strongly focused Gaussian laser beam containing a holographically produced optical vortex. Using experimental and theoretical techniques, we also explored changes in the trapping efficiency owing to the vortex core size, the relative refractive index, and the numerical aperture of the focusing objective.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  2. B. T. Unger and P. L. Marston, “Optical levitation of bubbles in water by the radiation pressure of a laser beam: an acoustically quiet levitator,” J. Acoust. Soc. Am. 83, 970–975 (1988).
    [CrossRef]
  3. J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352–355 (1994).
    [CrossRef] [PubMed]
  4. G. Roll, T. Kaiser, and G. Schweiger, “Optical trap sedimentation cell-a new technique for the sizing of microparticles,” J. Aerosol Sci. 27, 105–117 (1996).
    [CrossRef]
  5. M. Lankers, E. E. M. Khaled, J. Popp, G. Rössling, H. Stahl, and W. Kiefer, “Determination of size changes of optically trapped gas bubbles by elastic light backscattering,” Appl. Opt. 36, 1638–1643 (1997).
    [CrossRef] [PubMed]
  6. W. H. Wright, G. J. Sonek, Y. Tadir, and Michael W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
    [CrossRef]
  7. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
    [CrossRef]
  8. F. Hoffmann, “Laser microbeams for the manipulation of plant cells and subcellular structures,” Plant Sci. 113, 1–11 (1996).
  9. C. S. Buer, K. T. Gahagan, G. A. Swartzlander, Jr., and P. J. Weathers, “Threshold of power for Cucumis melo using an Ar+ laser beam,” In Vitro Cellular and Developmental Biology—Animal 32 (Part II), 82A (1996).
  10. Y. Tadir, W. H. Wright, O. Vafa, R. Asch, and M. W. Berns, “Force generated by human sperm correlated to velocity and determined using a laser generated optical trap,” Fert. Ster. 53, 944–947 (1990).
  11. K. Svoboda and S. M. Block, “Force and velocity measured for single kinesin molecules,” Cell 77, 773–784 (1994).
    [CrossRef] [PubMed]
  12. P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666–1673 (1995).
    [CrossRef] [PubMed]
  13. M. Schindler, “The cell optical displacement assay (coda): measurements of cytoskeletal tension in living plant cells with a laser optical trap,” Methods Cell Biol. 49, 71–84 (1995).
  14. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of single living cells using infra-red laser beams,” Ber. Bunsenges. Phys. Chem. 93, 254–260 (1989).
    [CrossRef]
  15. I. A. Vorobjev, H. Liang, W. H. Wright, and M. W. Berns, “Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges,” Biophys. J. 64, 533–538 (1993).
    [CrossRef] [PubMed]
  16. K. Konig, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21, 1090–1092 (1996).
    [CrossRef]
  17. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
    [CrossRef] [PubMed]
  18. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
    [CrossRef]
  19. V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992).
    [CrossRef]
  20. A. Ashkin, “Forces of a single-beam gradient trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
    [CrossRef] [PubMed]
  21. S. Sato, M. Ishigure, and H. Inaba, “Application of higher-order-mode Nd:YAG laser beam for manipulation and rotation of biological cells,” in Conference on Lasers and Electro-Optics, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 280–281.
  22. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
    [CrossRef] [PubMed]
  23. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
    [CrossRef]
  24. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–828 (1995).
    [CrossRef] [PubMed]
  25. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
    [CrossRef] [PubMed]
  26. N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485–2491 (1996).
    [CrossRef]
  27. D. Rozas, C. T. Law, and G. A. Swartzlander, Jr., “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B 14, 3054–3065 (1997).
    [CrossRef]
  28. D. Rozas, Z. S. Sacks, and G. A. Swartzlander, Jr., “Experimental observation of fluid-like motion of optical vortices,” Phys. Rev. Lett. 79, 3399–3402 (1997).
    [CrossRef]
  29. K. T. Gahagan and G. A. Swartzlander, Jr., “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
    [CrossRef] [PubMed]
  30. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
    [CrossRef]
  31. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
    [CrossRef]
  32. E. Higurashi, O. Ohguchi, and H. Ukita, “Optical trapping of low-refractive-index microfabricated objects using radiation pressure exerted on their inner walls,” Opt. Lett. 20, 1931–1933 (1995).
    [CrossRef] [PubMed]
  33. J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
    [CrossRef]
  34. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
    [CrossRef] [PubMed]
  35. K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
    [CrossRef]
  36. G. Roosen and C. Imbert, “Optical levitation by means of 2 horizontal laser beams: theoretical and experimental study,” Phys. Lett. 59A, 6–8 (1976).
    [CrossRef]
  37. R. Gussgard, T. Lindmo, and I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1922–1930 (1992).
    [CrossRef]
  38. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), pp. 208–215.
  39. A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974).
    [CrossRef]
  40. Ref. 38, pp. 73–74.

1997

1996

K. T. Gahagan and G. A. Swartzlander, Jr., “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
[CrossRef] [PubMed]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef] [PubMed]

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485–2491 (1996).
[CrossRef]

K. Konig, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21, 1090–1092 (1996).
[CrossRef]

G. Roll, T. Kaiser, and G. Schweiger, “Optical trap sedimentation cell-a new technique for the sizing of microparticles,” J. Aerosol Sci. 27, 105–117 (1996).
[CrossRef]

1995

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666–1673 (1995).
[CrossRef] [PubMed]

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–828 (1995).
[CrossRef] [PubMed]

E. Higurashi, O. Ohguchi, and H. Ukita, “Optical trapping of low-refractive-index microfabricated objects using radiation pressure exerted on their inner walls,” Opt. Lett. 20, 1931–1933 (1995).
[CrossRef] [PubMed]

1994

W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
[CrossRef] [PubMed]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[CrossRef]

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
[CrossRef] [PubMed]

J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352–355 (1994).
[CrossRef] [PubMed]

K. Svoboda and S. M. Block, “Force and velocity measured for single kinesin molecules,” Cell 77, 773–784 (1994).
[CrossRef] [PubMed]

1993

I. A. Vorobjev, H. Liang, W. H. Wright, and M. W. Berns, “Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges,” Biophys. J. 64, 533–538 (1993).
[CrossRef] [PubMed]

1992

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

R. Gussgard, T. Lindmo, and I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1922–1930 (1992).
[CrossRef]

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992).
[CrossRef]

A. Ashkin, “Forces of a single-beam gradient trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef] [PubMed]

1990

Y. Tadir, W. H. Wright, O. Vafa, R. Asch, and M. W. Berns, “Force generated by human sperm correlated to velocity and determined using a laser generated optical trap,” Fert. Ster. 53, 944–947 (1990).

W. H. Wright, G. J. Sonek, Y. Tadir, and Michael W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

1989

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of single living cells using infra-red laser beams,” Ber. Bunsenges. Phys. Chem. 93, 254–260 (1989).
[CrossRef]

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
[CrossRef]

1988

B. T. Unger and P. L. Marston, “Optical levitation of bubbles in water by the radiation pressure of a laser beam: an acoustically quiet levitator,” J. Acoust. Soc. Am. 83, 970–975 (1988).
[CrossRef]

1987

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
[CrossRef]

1986

1976

G. Roosen and C. Imbert, “Optical levitation by means of 2 horizontal laser beams: theoretical and experimental study,” Phys. Lett. 59A, 6–8 (1976).
[CrossRef]

1974

A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974).
[CrossRef]

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
[CrossRef]

Alexander, D. R.

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
[CrossRef]

Allen, L.

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[CrossRef] [PubMed]

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485–2491 (1996).
[CrossRef]

Asch, R.

Y. Tadir, W. H. Wright, O. Vafa, R. Asch, and M. W. Berns, “Force generated by human sperm correlated to velocity and determined using a laser generated optical trap,” Fert. Ster. 53, 944–947 (1990).

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of single living cells using infra-red laser beams,” Ber. Bunsenges. Phys. Chem. 93, 254–260 (1989).
[CrossRef]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974).
[CrossRef]

Barton, J. P.

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
[CrossRef]

Bazhenov, V. Y.

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992).
[CrossRef]

Berns, M. W.

K. Konig, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21, 1090–1092 (1996).
[CrossRef]

W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
[CrossRef] [PubMed]

I. A. Vorobjev, H. Liang, W. H. Wright, and M. W. Berns, “Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges,” Biophys. J. 64, 533–538 (1993).
[CrossRef] [PubMed]

Y. Tadir, W. H. Wright, O. Vafa, R. Asch, and M. W. Berns, “Force generated by human sperm correlated to velocity and determined using a laser generated optical trap,” Fert. Ster. 53, 944–947 (1990).

Berns, Michael W.

W. H. Wright, G. J. Sonek, Y. Tadir, and Michael W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

Berry, M. V.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

K. Svoboda and S. M. Block, “Force and velocity measured for single kinesin molecules,” Cell 77, 773–784 (1994).
[CrossRef] [PubMed]

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
[CrossRef] [PubMed]

Brakenhoff, G. J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666–1673 (1995).
[CrossRef] [PubMed]

Brevik, I.

Bronkhorst, P. J. H.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666–1673 (1995).
[CrossRef] [PubMed]

Chu, S.

Crocker, J. C.

J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352–355 (1994).
[CrossRef] [PubMed]

Dholakia, K.

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of single living cells using infra-red laser beams,” Ber. Bunsenges. Phys. Chem. 93, 254–260 (1989).
[CrossRef]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974).
[CrossRef]

Enger, J.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef] [PubMed]

Friese, M. E. J.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–828 (1995).
[CrossRef] [PubMed]

Gahagan, K. T.

Gouesbet, G.

K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[CrossRef]

Gréhan, G.

K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[CrossRef]

Grier, D. G.

J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352–355 (1994).
[CrossRef] [PubMed]

Grimbergen, J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666–1673 (1995).
[CrossRef] [PubMed]

Gussgard, R.

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–828 (1995).
[CrossRef] [PubMed]

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[CrossRef]

Heckenberg, N. R.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef] [PubMed]

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–828 (1995).
[CrossRef] [PubMed]

Higurashi, E.

E. Higurashi, O. Ohguchi, and H. Ukita, “Optical trapping of low-refractive-index microfabricated objects using radiation pressure exerted on their inner walls,” Opt. Lett. 20, 1931–1933 (1995).
[CrossRef] [PubMed]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[CrossRef]

Imbert, C.

G. Roosen and C. Imbert, “Optical levitation by means of 2 horizontal laser beams: theoretical and experimental study,” Phys. Lett. 59A, 6–8 (1976).
[CrossRef]

Kaiser, T.

G. Roll, T. Kaiser, and G. Schweiger, “Optical trap sedimentation cell-a new technique for the sizing of microparticles,” J. Aerosol Sci. 27, 105–117 (1996).
[CrossRef]

Khaled, E. E. M.

Kiefer, W.

Kitamura, N.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Konig, K.

Koshioka, M.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Lankers, M.

Law, C. T.

Liang, H.

K. Konig, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21, 1090–1092 (1996).
[CrossRef]

I. A. Vorobjev, H. Liang, W. H. Wright, and M. W. Berns, “Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges,” Biophys. J. 64, 533–538 (1993).
[CrossRef] [PubMed]

Lindmo, T.

Marston, P. L.

B. T. Unger and P. L. Marston, “Optical levitation of bubbles in water by the radiation pressure of a laser beam: an acoustically quiet levitator,” J. Acoust. Soc. Am. 83, 970–975 (1988).
[CrossRef]

Masuhara, H.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Misawa, H.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Nijh, J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666–1673 (1995).
[CrossRef] [PubMed]

Nye, J. F.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
[CrossRef]

Ohguchi, O.

E. Higurashi, O. Ohguchi, and H. Ukita, “Optical trapping of low-refractive-index microfabricated objects using radiation pressure exerted on their inner walls,” Opt. Lett. 20, 1931–1933 (1995).
[CrossRef] [PubMed]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[CrossRef]

Padgett, M. J.

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[CrossRef] [PubMed]

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485–2491 (1996).
[CrossRef]

Popp, J.

Ren, K. F.

K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[CrossRef]

Roll, G.

G. Roll, T. Kaiser, and G. Schweiger, “Optical trap sedimentation cell-a new technique for the sizing of microparticles,” J. Aerosol Sci. 27, 105–117 (1996).
[CrossRef]

Roosen, G.

G. Roosen and C. Imbert, “Optical levitation by means of 2 horizontal laser beams: theoretical and experimental study,” Phys. Lett. 59A, 6–8 (1976).
[CrossRef]

Rössling, G.

Rozas, D.

D. Rozas, C. T. Law, and G. A. Swartzlander, Jr., “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B 14, 3054–3065 (1997).
[CrossRef]

D. Rozas, Z. S. Sacks, and G. A. Swartzlander, Jr., “Experimental observation of fluid-like motion of optical vortices,” Phys. Rev. Lett. 79, 3399–3402 (1997).
[CrossRef]

Rubinsztein-Dunlop, H.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef] [PubMed]

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–828 (1995).
[CrossRef] [PubMed]

Sacks, Z. S.

D. Rozas, Z. S. Sacks, and G. A. Swartzlander, Jr., “Experimental observation of fluid-like motion of optical vortices,” Phys. Rev. Lett. 79, 3399–3402 (1997).
[CrossRef]

Sasaki, K.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Schweiger, G.

G. Roll, T. Kaiser, and G. Schweiger, “Optical trap sedimentation cell-a new technique for the sizing of microparticles,” J. Aerosol Sci. 27, 105–117 (1996).
[CrossRef]

Simpson, N. B.

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[CrossRef] [PubMed]

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485–2491 (1996).
[CrossRef]

Sixma, J. J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666–1673 (1995).
[CrossRef] [PubMed]

Sonek, G. J.

W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
[CrossRef] [PubMed]

W. H. Wright, G. J. Sonek, Y. Tadir, and Michael W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

Soskin, M. S.

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992).
[CrossRef]

Stahl, H.

Streekstra, G. J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666–1673 (1995).
[CrossRef] [PubMed]

Svoboda, K.

K. Svoboda and S. M. Block, “Force and velocity measured for single kinesin molecules,” Cell 77, 773–784 (1994).
[CrossRef] [PubMed]

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
[CrossRef] [PubMed]

Swartzlander Jr., G. A.

Tadir, Y.

W. H. Wright, G. J. Sonek, Y. Tadir, and Michael W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

Y. Tadir, W. H. Wright, O. Vafa, R. Asch, and M. W. Berns, “Force generated by human sperm correlated to velocity and determined using a laser generated optical trap,” Fert. Ster. 53, 944–947 (1990).

Tanaka, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[CrossRef]

Tromberg, B. J.

Ukita, H.

E. Higurashi, O. Ohguchi, and H. Ukita, “Optical trapping of low-refractive-index microfabricated objects using radiation pressure exerted on their inner walls,” Opt. Lett. 20, 1931–1933 (1995).
[CrossRef] [PubMed]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[CrossRef]

Unger, B. T.

B. T. Unger and P. L. Marston, “Optical levitation of bubbles in water by the radiation pressure of a laser beam: an acoustically quiet levitator,” J. Acoust. Soc. Am. 83, 970–975 (1988).
[CrossRef]

Vafa, O.

Y. Tadir, W. H. Wright, O. Vafa, R. Asch, and M. W. Berns, “Force generated by human sperm correlated to velocity and determined using a laser generated optical trap,” Fert. Ster. 53, 944–947 (1990).

Vasnetsov, M. V.

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992).
[CrossRef]

Vorobjev, I. A.

I. A. Vorobjev, H. Liang, W. H. Wright, and M. W. Berns, “Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges,” Biophys. J. 64, 533–538 (1993).
[CrossRef] [PubMed]

Wright, W. H.

W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
[CrossRef] [PubMed]

I. A. Vorobjev, H. Liang, W. H. Wright, and M. W. Berns, “Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges,” Biophys. J. 64, 533–538 (1993).
[CrossRef] [PubMed]

Y. Tadir, W. H. Wright, O. Vafa, R. Asch, and M. W. Berns, “Force generated by human sperm correlated to velocity and determined using a laser generated optical trap,” Fert. Ster. 53, 944–947 (1990).

W. H. Wright, G. J. Sonek, Y. Tadir, and Michael W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974).
[CrossRef]

Ber. Bunsenges. Phys. Chem.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of single living cells using infra-red laser beams,” Ber. Bunsenges. Phys. Chem. 93, 254–260 (1989).
[CrossRef]

Biophys. J.

I. A. Vorobjev, H. Liang, W. H. Wright, and M. W. Berns, “Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges,” Biophys. J. 64, 533–538 (1993).
[CrossRef] [PubMed]

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666–1673 (1995).
[CrossRef] [PubMed]

A. Ashkin, “Forces of a single-beam gradient trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef] [PubMed]

Cell

K. Svoboda and S. M. Block, “Force and velocity measured for single kinesin molecules,” Cell 77, 773–784 (1994).
[CrossRef] [PubMed]

Fert. Ster.

Y. Tadir, W. H. Wright, O. Vafa, R. Asch, and M. W. Berns, “Force generated by human sperm correlated to velocity and determined using a laser generated optical trap,” Fert. Ster. 53, 944–947 (1990).

IEEE J. Quantum Electron.

W. H. Wright, G. J. Sonek, Y. Tadir, and Michael W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

J. Acoust. Soc. Am.

B. T. Unger and P. L. Marston, “Optical levitation of bubbles in water by the radiation pressure of a laser beam: an acoustically quiet levitator,” J. Acoust. Soc. Am. 83, 970–975 (1988).
[CrossRef]

J. Aerosol Sci.

G. Roll, T. Kaiser, and G. Schweiger, “Optical trap sedimentation cell-a new technique for the sizing of microparticles,” J. Aerosol Sci. 27, 105–117 (1996).
[CrossRef]

J. Appl. Phys.

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
[CrossRef]

J. Mod. Opt.

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992).
[CrossRef]

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[CrossRef]

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485–2491 (1996).
[CrossRef]

J. Opt. Soc. Am. B

Nature (London)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
[CrossRef]

Opt. Commun.

K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[CrossRef]

Opt. Lett.

Phys. Lett.

G. Roosen and C. Imbert, “Optical levitation by means of 2 horizontal laser beams: theoretical and experimental study,” Phys. Lett. 59A, 6–8 (1976).
[CrossRef]

Phys. Rev. A

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett.

D. Rozas, Z. S. Sacks, and G. A. Swartzlander, Jr., “Experimental observation of fluid-like motion of optical vortices,” Phys. Rev. Lett. 79, 3399–3402 (1997).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–828 (1995).
[CrossRef] [PubMed]

J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352–355 (1994).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. A

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
[CrossRef]

Other

M. Schindler, “The cell optical displacement assay (coda): measurements of cytoskeletal tension in living plant cells with a laser optical trap,” Methods Cell Biol. 49, 71–84 (1995).

F. Hoffmann, “Laser microbeams for the manipulation of plant cells and subcellular structures,” Plant Sci. 113, 1–11 (1996).

C. S. Buer, K. T. Gahagan, G. A. Swartzlander, Jr., and P. J. Weathers, “Threshold of power for Cucumis melo using an Ar+ laser beam,” In Vitro Cellular and Developmental Biology—Animal 32 (Part II), 82A (1996).

S. Sato, M. Ishigure, and H. Inaba, “Application of higher-order-mode Nd:YAG laser beam for manipulation and rotation of biological cells,” in Conference on Lasers and Electro-Optics, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 280–281.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), pp. 208–215.

Ref. 38, pp. 73–74.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Trajectory for an arbitrary ray normally incident at the input aperture of the focusing objective. (b) View of the plane of incidence for a single ray with incident wave vector k(m) striking a low-index particle (np/n01). The change in momentum resulting from reflection and refraction gives rise to a radiation pressure force F(m)=Fs(m)+Fg(m).

Fig. 2
Fig. 2

(a) Intensity profile of a vortex beam with beam waist w0 and vortex waist wv at input aperture of focusing objective. (b) Diagram of stable trapping configuration for a low-index particle in an OVT. Diagram is drawn to scale for a water droplet in acetophenone trapped with NA=1.3 and η=0.1.

Fig. 3
Fig. 3

Vector representation of the trapping efficiency for an OVT with n=0.9, η=0.1, and NA=1.3 in a vertical plane containing the optical axis. Coordinates are scaled in units of the particle radius Rp. The length of the arrows scales logarithmically with the efficiency according to the scale depicted in the upper-right corner of the figure. The tail of the arrows marks the position of the particle center.

Fig. 4
Fig. 4

(a) Longitudinal and (b) transverse components of the trapping efficiency along the axis (ρ=0) and in the plane z =ztrap, respectively (n=0.9, η=0.1, and NA=1.3).

Fig. 5
Fig. 5

Intensity profiles for η equal to 0.0 (Gaussian), 0.1, 0.2, and 0.3 are normalized with respect to the total beam power and scaled to the input aperture radius ρa.

Fig. 6
Fig. 6

(a) Qz(ρ=0) and (b) Qρ(z=ztrap) for relative vortex core sizes, η equal to 0.0, 0.1, 0.2, and 0.3. Legend applies to both graphs.

Fig. 7
Fig. 7

(a) Qz(ρ=0) and (b) Qρ(z=ztrap) for numerical apertures of 1.0, 1.1, 1.2, and 1.3. Legend applies to both graphs.

Fig. 8
Fig. 8

(a) Qz(ρ=0) and (b) Qρ(z=ztrap) for relative refractive-index values m equal to 0.75, 0.8, 0.85 and 0.9. Note the strong dependence of the stable trapping position on m. Legend applies to both graphs.

Fig. 9
Fig. 9

Ray efficiency Qz(m) for an individual ray incident at an angle γm on a particle located at ztrap=-2.54Rp (m=0.87, η =0.1, and NA=1.3). The dotted and dashed curves refer to Qgz(m) and Qsz(m), respectively. The solid and dotted-dashed curves correspond to the total longitudinal ray efficiency for two different values of m, as indicated in the legend.

Fig. 10
Fig. 10

Optical trap created by passing an Ar+ laser beam through a computer-generated hologram (CGH) of an optical vortex. The beam is focused with a microscope objective (Obj) into a sample chamber (Cell) containing a low-index particle system. Beam expanders (BX1, BX2) permit variation of η, and the beam profile is monitored with a CCD camera (CCD2). The particle system is imaged through the same objective onto a second camera (CCD). A collimating lens (L) allows z scanning of the image plane. BS, beam splitter; M, mirror.

Fig. 11
Fig. 11

Manipulation of a trapped water droplet in acetophenone (indicated by an arrow in the first frame). Transverse trapping is shown in the first four frames. Longitudinal trapping is shown in the remaining frames. Frame dimensions are 50 ×30 μm. The time for each frame is sequential, but not linear. The total time is approximately 10 s.

Fig. 12
Fig. 12

Stable trapping position measured as a function of particle radius for (a) the HGS system and (b) the H2O– acetophenone system. Solid lines indicate a linear least-squares fit to the measured data. Dashed line indicates RO calculation for the limiting case of an air bubble in water.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

F(m)=n0Pmc k^(m)-Rmk^1(m)-Tm2i=2Rm(i-2)k^i(m)
=n0Pmc Qm,
Fs(m)=[F(m)k^(m)]k^(m),
Fs(m)=n0Pmc 1+Rm cos(2α)-Tm2[cos(2α-2β)+Rm cos(2α)]1+Rm2+2Rm cos(2β),
Fg(m)=k^(m)×[F(m)×k^(m)],
Fg(m)=n0Pmc Rm sin(2α)-Tm2[sin(2α-2β)+Rm sin(2α)]1+Rm2+2Rm cos(2β).
Fz(m)=±Fg(m) sin γm+Fs(m) cos γm=Fgz(m)+Fsz(m),
Fρ(m)=[±Fg(m) cos γm+Fs(m) sin γm]cos ϕm=Fgρ(m)+Fsρ(m),
Qsρ=(c/n0P)(m)Fsρ(m),
Qsz=(c/n0P)(m)Fsz(m),
Qgρ=(c/n0P)(m)Fgρ(m),
Qgz=(c/n0P)(m)Fgz(m).
A0E0 exp(-ρ2/w02)tanh(ρ/wv),
t=RP1-ρHGS-ρglassρair-ρglass1/3,

Metrics