J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783–4796 (1997).

[CrossRef]

V. V. Afanasjev and N. N. Akhmediev, “A new kind of periodic stationary solution of the cubic Ginzburg-Landau equation,” Physica A 233, 801–808 (1996).

[CrossRef]

V. V. Afanasjev and N. Akhmediev, “Soliton interaction in nonequilibrium dynamical systems,” Phys. Rev. E 53, 6471–6475 (1996).

[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).

[CrossRef]

V. V. Afanasjev, N. N. Akhmediev, and J. M. Soto-Crespo, “Three forms of localised solution of the quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1931–1939 (1996).

[CrossRef]

A. B. Buryak and N. N. Akhmediev, “Stability criterion for stationary bound states of solitons with radiationless oscillating tails,” Phys. Rev. E 51, 3572–3578 (1995).

[CrossRef]

M. Matsumoto, H. Ikeda, T. Uda, and A. Hasegawa, “Stable soliton transmission in the system with nonlinear gain,” J. Lightwave Technol. 13, 658–665 (1995).

[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive mode-locking in fiber ring laser: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).

[CrossRef]

M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, L. Bossalini, and F. Fontana, “Role of dispersion in pulse emission from a sliding-frequency fiber laser,” J. Opt. Soc. Am. B 12, 938–944 (1995).

[CrossRef]

C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Stability of passively mode-locked fiber lasers with fast saturable absorption,” Opt. Lett. 19, 198–200 (1994).

[CrossRef]
[PubMed]

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–208 (1994).

[CrossRef]

N. N. Akhmediev and A. Ankiewicz, “Generation of a train of solitons with arbitrary phase difference between neighboring solitons,” Opt. Lett. 19, 545–547 (1994).

[CrossRef]
[PubMed]

J. Alexander and C. K. R. T. Jones, “Existence and stability of asymptotically oscillatory double pulses,” J. reine angew. Math. 44649–79 (1994).

N. N. Akhmediev, G. Town, and S. Wabnitz, “Soliton coding based on shape invariant interacting soliton packets: the three-soliton case,” Opt. Commun. 104, 385–390 (1994).

[CrossRef]

V. V. Afanasjev, “Interpretation of the effect of reduction of soliton interaction by bandwidth-limited amplification,” Opt. Lett. 18, 790–792 (1993).

[CrossRef]
[PubMed]

V. J. Matsas, D. J. Richardson, T. P. Newson, and D. N. Payne, “Characterization of a self-starting passively modelocked fiber ring laser that exploits nonlinear polarization evolution,” Opt. Lett. 18, 358–360 (1993).

[CrossRef]
[PubMed]

J. D. Moores, “On the Ginzburg-Landau laser mode-locking model with fifth-order saturable absorber term,” Opt. Commun. 96, 65–70 (1993).

[CrossRef]

Y. Kodama and A. Hasegawa, “Generation of asymptotically stable optical solitons and suppression of the Gordon-Haus effect,” Opt. Lett. 17, 31–34 (1992).

[CrossRef]
[PubMed]

L. F. Mollenauer, J. P. Gordon, and S. G. Evangelides, “The sliding-frequency guiding filter: an improved form of soliton jitter control,” Opt. Lett. 17, 1575–1577 (1992).

[CrossRef]
[PubMed]

Y. Kodama, M. Romagnoli, and S. Wabnitz, “Soliton stability and interactions in fiber lasers,” Electron. Lett. 28, 1981–1982 (1992).

[CrossRef]

W. van Saarloos and P. C. Hohenberg, “Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equation,” Physica D 56, 303–367 (1992).

[CrossRef]

B. A. Malomed, “Bound solitons in the nonlinear Schrodinger-Ginzburg-Landau equation,” Phys. Rev. A 44, 6954–6957 (1991).

[CrossRef]
[PubMed]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).

[CrossRef]

A. Mecozzi, J. D. Moores, H. A. Haus, and Y. Lai, “Soliton transmission control,” Opt. Lett. 16, 1841–1843 (1991);“Modulation and filtering control of soliton transmission,” J. Opt. Soc. Am. B 9, 1350–1357 (1992).

[CrossRef]
[PubMed]

P. A. Bélanger, “Coupled-cavity mode locking: a nonlinear model,” J. Opt. Soc. Am. B 8, 2077–2081 (1991).

[CrossRef]

M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulator,” Opt. Lett. 16, 502–504 (1991).

[CrossRef]
[PubMed]

W. Schöpf and L. Kramer, “Small-amplitude periodic and chaotic solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 66, 2316–2319 (1991).

[CrossRef]

V. Hakim, P. Jakobsen, and Y. Pomeau, “Fronts vs. solitary waves in nonequilibrium systems,” Europhys. Lett. 11, 19–24 (1990).

[CrossRef]

W. van Saarloos and P. C. Hohenberg, “Pulses and fronts in the complex Ginzburg–Landau equation,” Phys. Rev. Lett. 64, 749–752 (1990).

[CrossRef]
[PubMed]

H. R. Brand and R. J. Deissler, “Interaction of localized solution for subcritical bifurcations,” Phys. Rev. Lett. 63, 2801–2804 (1989).

[CrossRef]
[PubMed]

P. A. Bélanger, L. Gagnon, and C. Paré, “Solitary pulses in an amplified nonlinear dispersive medium,” Opt. Lett. 14, 943–945 (1989);C. Paré, L. Gagnon, and P. A. Bélanger, “Spatial solitary wave in a weakly saturated amplifying/absorbing medium,” Opt. Commun. 74, 228–232 (1989).

[CrossRef]
[PubMed]

C. Desem and P. L. Chu, “Reducing soliton interaction in single-mode optical fibres,” IEE Proc. J 134, 145–151 (1987).

N. Bekki and K. Nozaki, “Formations of spatial patterns and holes in the generalized Ginzburg-Landau equation,” Phys. Lett. A 110, 133–135 (1985).

[CrossRef]

K. Nozaki and N. Bekki, “Exact solutions of the generalized Ginzburg-Landau equation,” J. Phys. Soc. Jpn. 53, 1581–1582 (1984).

[CrossRef]

V. I. Karpman and V. V. Solov’ev, “A perturbation approach to the two-soliton systems,” Physica D 3, 487–502 (1981).

[CrossRef]

K. A. Gorshkov and L. A. Ostrovsky, “Interactions of solitons in nonintegrable systems: direct perturbation method and applications,” Physica D 3, 428–438 (1981).

[CrossRef]

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783–4796 (1997).

[CrossRef]

V. V. Afanasjev and N. N. Akhmediev, “A new kind of periodic stationary solution of the cubic Ginzburg-Landau equation,” Physica A 233, 801–808 (1996).

[CrossRef]

V. V. Afanasjev and N. Akhmediev, “Soliton interaction in nonequilibrium dynamical systems,” Phys. Rev. E 53, 6471–6475 (1996).

[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).

[CrossRef]

V. V. Afanasjev, N. N. Akhmediev, and J. M. Soto-Crespo, “Three forms of localised solution of the quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1931–1939 (1996).

[CrossRef]

V. V. Afanasjev, “Interpretation of the effect of reduction of soliton interaction by bandwidth-limited amplification,” Opt. Lett. 18, 790–792 (1993).

[CrossRef]
[PubMed]

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

V. V. Afanasjev and N. Akhmediev, “Soliton interaction in nonequilibrium dynamical systems,” Phys. Rev. E 53, 6471–6475 (1996).

[CrossRef]

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783–4796 (1997).

[CrossRef]

V. V. Afanasjev and N. N. Akhmediev, “A new kind of periodic stationary solution of the cubic Ginzburg-Landau equation,” Physica A 233, 801–808 (1996).

[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).

[CrossRef]

V. V. Afanasjev, N. N. Akhmediev, and J. M. Soto-Crespo, “Three forms of localised solution of the quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1931–1939 (1996).

[CrossRef]

A. B. Buryak and N. N. Akhmediev, “Stability criterion for stationary bound states of solitons with radiationless oscillating tails,” Phys. Rev. E 51, 3572–3578 (1995).

[CrossRef]

N. N. Akhmediev, G. Town, and S. Wabnitz, “Soliton coding based on shape invariant interacting soliton packets: the three-soliton case,” Opt. Commun. 104, 385–390 (1994).

[CrossRef]

N. N. Akhmediev and A. Ankiewicz, “Generation of a train of solitons with arbitrary phase difference between neighboring solitons,” Opt. Lett. 19, 545–547 (1994).

[CrossRef]
[PubMed]

N. N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses and Beams (Chapman & Hall, London, 1997).

J. Alexander and C. K. R. T. Jones, “Existence and stability of asymptotically oscillatory double pulses,” J. reine angew. Math. 44649–79 (1994).

N. Bekki and K. Nozaki, “Formations of spatial patterns and holes in the generalized Ginzburg-Landau equation,” Phys. Lett. A 110, 133–135 (1985).

[CrossRef]

K. Nozaki and N. Bekki, “Exact solutions of the generalized Ginzburg-Landau equation,” J. Phys. Soc. Jpn. 53, 1581–1582 (1984).

[CrossRef]

P. A. Bélanger, “Coupled-cavity mode locking: a nonlinear model,” J. Opt. Soc. Am. B 8, 2077–2081 (1991).

[CrossRef]

P. A. Bélanger, L. Gagnon, and C. Paré, “Solitary pulses in an amplified nonlinear dispersive medium,” Opt. Lett. 14, 943–945 (1989);C. Paré, L. Gagnon, and P. A. Bélanger, “Spatial solitary wave in a weakly saturated amplifying/absorbing medium,” Opt. Commun. 74, 228–232 (1989).

[CrossRef]
[PubMed]

H. R. Brand and R. J. Deissler, “Interaction of localized solution for subcritical bifurcations,” Phys. Rev. Lett. 63, 2801–2804 (1989).

[CrossRef]
[PubMed]

A. B. Buryak and N. N. Akhmediev, “Stability criterion for stationary bound states of solitons with radiationless oscillating tails,” Phys. Rev. E 51, 3572–3578 (1995).

[CrossRef]

C. Desem and P. L. Chu, “Reducing soliton interaction in single-mode optical fibres,” IEE Proc. J 134, 145–151 (1987).

H. R. Brand and R. J. Deissler, “Interaction of localized solution for subcritical bifurcations,” Phys. Rev. Lett. 63, 2801–2804 (1989).

[CrossRef]
[PubMed]

C. Desem and P. L. Chu, “Reducing soliton interaction in single-mode optical fibres,” IEE Proc. J 134, 145–151 (1987).

P. A. Bélanger, L. Gagnon, and C. Paré, “Solitary pulses in an amplified nonlinear dispersive medium,” Opt. Lett. 14, 943–945 (1989);C. Paré, L. Gagnon, and P. A. Bélanger, “Spatial solitary wave in a weakly saturated amplifying/absorbing medium,” Opt. Commun. 74, 228–232 (1989).

[CrossRef]
[PubMed]

K. A. Gorshkov and L. A. Ostrovsky, “Interactions of solitons in nonintegrable systems: direct perturbation method and applications,” Physica D 3, 428–438 (1981).

[CrossRef]

V. Hakim, P. Jakobsen, and Y. Pomeau, “Fronts vs. solitary waves in nonequilibrium systems,” Europhys. Lett. 11, 19–24 (1990).

[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive mode-locking in fiber ring laser: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).

[CrossRef]

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–208 (1994).

[CrossRef]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).

[CrossRef]

A. Mecozzi, J. D. Moores, H. A. Haus, and Y. Lai, “Soliton transmission control,” Opt. Lett. 16, 1841–1843 (1991);“Modulation and filtering control of soliton transmission,” J. Opt. Soc. Am. B 9, 1350–1357 (1992).

[CrossRef]
[PubMed]

W. van Saarloos and P. C. Hohenberg, “Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equation,” Physica D 56, 303–367 (1992).

[CrossRef]

W. van Saarloos and P. C. Hohenberg, “Pulses and fronts in the complex Ginzburg–Landau equation,” Phys. Rev. Lett. 64, 749–752 (1990).

[CrossRef]
[PubMed]

M. Matsumoto, H. Ikeda, T. Uda, and A. Hasegawa, “Stable soliton transmission in the system with nonlinear gain,” J. Lightwave Technol. 13, 658–665 (1995).

[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive mode-locking in fiber ring laser: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).

[CrossRef]

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–208 (1994).

[CrossRef]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).

[CrossRef]

V. Hakim, P. Jakobsen, and Y. Pomeau, “Fronts vs. solitary waves in nonequilibrium systems,” Europhys. Lett. 11, 19–24 (1990).

[CrossRef]

J. Alexander and C. K. R. T. Jones, “Existence and stability of asymptotically oscillatory double pulses,” J. reine angew. Math. 44649–79 (1994).

V. I. Karpman and V. V. Solov’ev, “A perturbation approach to the two-soliton systems,” Physica D 3, 487–502 (1981).

[CrossRef]

W. Schöpf and L. Kramer, “Small-amplitude periodic and chaotic solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 66, 2316–2319 (1991).

[CrossRef]

B. A. Malomed, “Bound solitons in the nonlinear Schrodinger-Ginzburg-Landau equation,” Phys. Rev. A 44, 6954–6957 (1991).

[CrossRef]
[PubMed]

M. Matsumoto, H. Ikeda, T. Uda, and A. Hasegawa, “Stable soliton transmission in the system with nonlinear gain,” J. Lightwave Technol. 13, 658–665 (1995).

[CrossRef]

J. D. Moores, “On the Ginzburg-Landau laser mode-locking model with fifth-order saturable absorber term,” Opt. Commun. 96, 65–70 (1993).

[CrossRef]

A. Mecozzi, J. D. Moores, H. A. Haus, and Y. Lai, “Soliton transmission control,” Opt. Lett. 16, 1841–1843 (1991);“Modulation and filtering control of soliton transmission,” J. Opt. Soc. Am. B 9, 1350–1357 (1992).

[CrossRef]
[PubMed]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive mode-locking in fiber ring laser: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).

[CrossRef]

N. Bekki and K. Nozaki, “Formations of spatial patterns and holes in the generalized Ginzburg-Landau equation,” Phys. Lett. A 110, 133–135 (1985).

[CrossRef]

K. Nozaki and N. Bekki, “Exact solutions of the generalized Ginzburg-Landau equation,” J. Phys. Soc. Jpn. 53, 1581–1582 (1984).

[CrossRef]

K. A. Gorshkov and L. A. Ostrovsky, “Interactions of solitons in nonintegrable systems: direct perturbation method and applications,” Physica D 3, 428–438 (1981).

[CrossRef]

P. A. Bélanger, L. Gagnon, and C. Paré, “Solitary pulses in an amplified nonlinear dispersive medium,” Opt. Lett. 14, 943–945 (1989);C. Paré, L. Gagnon, and P. A. Bélanger, “Spatial solitary wave in a weakly saturated amplifying/absorbing medium,” Opt. Commun. 74, 228–232 (1989).

[CrossRef]
[PubMed]

V. Hakim, P. Jakobsen, and Y. Pomeau, “Fronts vs. solitary waves in nonequilibrium systems,” Europhys. Lett. 11, 19–24 (1990).

[CrossRef]

M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, L. Bossalini, and F. Fontana, “Role of dispersion in pulse emission from a sliding-frequency fiber laser,” J. Opt. Soc. Am. B 12, 938–944 (1995).

[CrossRef]

Y. Kodama, M. Romagnoli, and S. Wabnitz, “Soliton stability and interactions in fiber lasers,” Electron. Lett. 28, 1981–1982 (1992).

[CrossRef]

W. Schöpf and L. Kramer, “Small-amplitude periodic and chaotic solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 66, 2316–2319 (1991).

[CrossRef]

V. I. Karpman and V. V. Solov’ev, “A perturbation approach to the two-soliton systems,” Physica D 3, 487–502 (1981).

[CrossRef]

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783–4796 (1997).

[CrossRef]

V. V. Afanasjev, N. N. Akhmediev, and J. M. Soto-Crespo, “Three forms of localised solution of the quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1931–1939 (1996).

[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).

[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive mode-locking in fiber ring laser: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).

[CrossRef]

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–208 (1994).

[CrossRef]

N. N. Akhmediev, G. Town, and S. Wabnitz, “Soliton coding based on shape invariant interacting soliton packets: the three-soliton case,” Opt. Commun. 104, 385–390 (1994).

[CrossRef]

M. Matsumoto, H. Ikeda, T. Uda, and A. Hasegawa, “Stable soliton transmission in the system with nonlinear gain,” J. Lightwave Technol. 13, 658–665 (1995).

[CrossRef]

W. van Saarloos and P. C. Hohenberg, “Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equation,” Physica D 56, 303–367 (1992).

[CrossRef]

W. van Saarloos and P. C. Hohenberg, “Pulses and fronts in the complex Ginzburg–Landau equation,” Phys. Rev. Lett. 64, 749–752 (1990).

[CrossRef]
[PubMed]

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783–4796 (1997).

[CrossRef]

M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, L. Bossalini, and F. Fontana, “Role of dispersion in pulse emission from a sliding-frequency fiber laser,” J. Opt. Soc. Am. B 12, 938–944 (1995).

[CrossRef]

N. N. Akhmediev, G. Town, and S. Wabnitz, “Soliton coding based on shape invariant interacting soliton packets: the three-soliton case,” Opt. Commun. 104, 385–390 (1994).

[CrossRef]

Y. Kodama, M. Romagnoli, and S. Wabnitz, “Soliton stability and interactions in fiber lasers,” Electron. Lett. 28, 1981–1982 (1992).

[CrossRef]

Y. Kodama, M. Romagnoli, and S. Wabnitz, “Soliton stability and interactions in fiber lasers,” Electron. Lett. 28, 1981–1982 (1992).

[CrossRef]

V. Hakim, P. Jakobsen, and Y. Pomeau, “Fronts vs. solitary waves in nonequilibrium systems,” Europhys. Lett. 11, 19–24 (1990).

[CrossRef]

C. Desem and P. L. Chu, “Reducing soliton interaction in single-mode optical fibres,” IEE Proc. J 134, 145–151 (1987).

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–208 (1994).

[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive mode-locking in fiber ring laser: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).

[CrossRef]

M. Matsumoto, H. Ikeda, T. Uda, and A. Hasegawa, “Stable soliton transmission in the system with nonlinear gain,” J. Lightwave Technol. 13, 658–665 (1995).

[CrossRef]

P. A. Bélanger, “Coupled-cavity mode locking: a nonlinear model,” J. Opt. Soc. Am. B 8, 2077–2081 (1991).

[CrossRef]

M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, L. Bossalini, and F. Fontana, “Role of dispersion in pulse emission from a sliding-frequency fiber laser,” J. Opt. Soc. Am. B 12, 938–944 (1995).

[CrossRef]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).

[CrossRef]

K. Nozaki and N. Bekki, “Exact solutions of the generalized Ginzburg-Landau equation,” J. Phys. Soc. Jpn. 53, 1581–1582 (1984).

[CrossRef]

J. Alexander and C. K. R. T. Jones, “Existence and stability of asymptotically oscillatory double pulses,” J. reine angew. Math. 44649–79 (1994).

J. D. Moores, “On the Ginzburg-Landau laser mode-locking model with fifth-order saturable absorber term,” Opt. Commun. 96, 65–70 (1993).

[CrossRef]

N. N. Akhmediev, G. Town, and S. Wabnitz, “Soliton coding based on shape invariant interacting soliton packets: the three-soliton case,” Opt. Commun. 104, 385–390 (1994).

[CrossRef]

P. A. Bélanger, L. Gagnon, and C. Paré, “Solitary pulses in an amplified nonlinear dispersive medium,” Opt. Lett. 14, 943–945 (1989);C. Paré, L. Gagnon, and P. A. Bélanger, “Spatial solitary wave in a weakly saturated amplifying/absorbing medium,” Opt. Commun. 74, 228–232 (1989).

[CrossRef]
[PubMed]

A. Mecozzi, J. D. Moores, H. A. Haus, and Y. Lai, “Soliton transmission control,” Opt. Lett. 16, 1841–1843 (1991);“Modulation and filtering control of soliton transmission,” J. Opt. Soc. Am. B 9, 1350–1357 (1992).

[CrossRef]
[PubMed]

Y. Kodama and A. Hasegawa, “Generation of asymptotically stable optical solitons and suppression of the Gordon-Haus effect,” Opt. Lett. 17, 31–34 (1992).

[CrossRef]
[PubMed]

L. F. Mollenauer, J. P. Gordon, and S. G. Evangelides, “The sliding-frequency guiding filter: an improved form of soliton jitter control,” Opt. Lett. 17, 1575–1577 (1992).

[CrossRef]
[PubMed]

J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8, 596–598 (1983).

[CrossRef]
[PubMed]

D. Anderson and M. Lisak, “Bandwidth limits due to mutual pulse interaction in optical soliton communication systems,” Opt. Lett. 11, 174–176 (1986).

[CrossRef]
[PubMed]

V. V. Afanasjev, “Interpretation of the effect of reduction of soliton interaction by bandwidth-limited amplification,” Opt. Lett. 18, 790–792 (1993).

[CrossRef]
[PubMed]

M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulator,” Opt. Lett. 16, 502–504 (1991).

[CrossRef]
[PubMed]

V. J. Matsas, D. J. Richardson, T. P. Newson, and D. N. Payne, “Characterization of a self-starting passively modelocked fiber ring laser that exploits nonlinear polarization evolution,” Opt. Lett. 18, 358–360 (1993).

[CrossRef]
[PubMed]

C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Stability of passively mode-locked fiber lasers with fast saturable absorption,” Opt. Lett. 19, 198–200 (1994).

[CrossRef]
[PubMed]

N. N. Akhmediev and A. Ankiewicz, “Generation of a train of solitons with arbitrary phase difference between neighboring solitons,” Opt. Lett. 19, 545–547 (1994).

[CrossRef]
[PubMed]

N. Bekki and K. Nozaki, “Formations of spatial patterns and holes in the generalized Ginzburg-Landau equation,” Phys. Lett. A 110, 133–135 (1985).

[CrossRef]

B. A. Malomed, “Bound solitons in the nonlinear Schrodinger-Ginzburg-Landau equation,” Phys. Rev. A 44, 6954–6957 (1991).

[CrossRef]
[PubMed]

A. B. Buryak and N. N. Akhmediev, “Stability criterion for stationary bound states of solitons with radiationless oscillating tails,” Phys. Rev. E 51, 3572–3578 (1995).

[CrossRef]

V. V. Afanasjev and N. Akhmediev, “Soliton interaction in nonequilibrium dynamical systems,” Phys. Rev. E 53, 6471–6475 (1996).

[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).

[CrossRef]

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783–4796 (1997).

[CrossRef]

V. V. Afanasjev, N. N. Akhmediev, and J. M. Soto-Crespo, “Three forms of localised solution of the quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1931–1939 (1996).

[CrossRef]

W. Schöpf and L. Kramer, “Small-amplitude periodic and chaotic solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 66, 2316–2319 (1991).

[CrossRef]

W. van Saarloos and P. C. Hohenberg, “Pulses and fronts in the complex Ginzburg–Landau equation,” Phys. Rev. Lett. 64, 749–752 (1990).

[CrossRef]
[PubMed]

H. R. Brand and R. J. Deissler, “Interaction of localized solution for subcritical bifurcations,” Phys. Rev. Lett. 63, 2801–2804 (1989).

[CrossRef]
[PubMed]

V. V. Afanasjev and N. N. Akhmediev, “A new kind of periodic stationary solution of the cubic Ginzburg-Landau equation,” Physica A 233, 801–808 (1996).

[CrossRef]

W. van Saarloos and P. C. Hohenberg, “Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equation,” Physica D 56, 303–367 (1992).

[CrossRef]

V. I. Karpman and V. V. Solov’ev, “A perturbation approach to the two-soliton systems,” Physica D 3, 487–502 (1981).

[CrossRef]

K. A. Gorshkov and L. A. Ostrovsky, “Interactions of solitons in nonintegrable systems: direct perturbation method and applications,” Physica D 3, 428–438 (1981).

[CrossRef]

The theory of soliton bound states in Ref. 26 was simply (and to some extent quite arbitrarily) based on the introduction of an effective potential of interaction between the solitary pulses related to G. L. Lyapunov’s function.

N. N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses and Beams (Chapman & Hall, London, 1997).

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).