Abstract

We investigate femtosecond stimulated Raman scattering (SRS) in H2, D2, HD, and CH4 excited with 300-fs-duration pulses at 390-nm wavelength and with as much as 0.1 mJ of energy. We show that the SRS-generation threshold and conversion efficiency are due to the transient nature of SRS in femtosecond regime. We determine optimal conditions for efficient generation in the broad spectral range 289–797 nm and show how self-phase modulation and white-light generation limit the ultimate conversion efficiency.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Bespalov, V. N. Krylov, V. N. Mikhailov, V. A. Parfenov, and D. I. Staselko, “Generating tunable radiation with high spectral luminance based on vibrational and rotational stimulated Raman scattering in gases,” Opt. Spectrosc. 70, 193–196 (1991).
  2. J. G. Wessel, K. S. Repasky, and J. L. Carlsten, “Efficient seeding of a Raman amplifier with a visible laser diode,” Opt. Lett. 19, 1430–1432 (1994).
    [CrossRef] [PubMed]
  3. V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, “Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during superregenerative amplification,” Opt. Spectrosc. 63, 742–747 (1987).
  4. P. G. May and W. Sibbett, “Transient stimulated Raman scattering of femtosecond laser pulses,” Appl. Phys. Lett. 43, 624–626 (1983).
    [CrossRef]
  5. C. Jordan, K. Stankov, and G. Marowsky, “Compression of femtosecond light pulses by stimulated Raman scattering,” in International Quantum Electronics Conference, Vol. 9 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 97.
  6. J. Wang, Y. Siegel, C. Lii, E. Mazur, and J. Reintjes, “Subpicosecond stimulated Raman scattering in high-pressure hydrogen,” J. Opt. Soc. Am. B 11, 1031–1037 (1994).
    [CrossRef]
  7. V. Krylov, A. Rebane, D. Erni, O. Ollikainen, U. Wild, V. Bespalov, and D. Staselko, “Stimulated Raman scattering in hydrogen by frequency-doubled amplified femtosecond Ti:sapphire laser pulses,” Opt. Lett. 21, 381–383 (1996).
    [CrossRef] [PubMed]
  8. R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60–72 (1970).
    [CrossRef]
  9. N. J. Everall, J. P. Partanen, J. R. M. Barr, and M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64, 393–397 (1987).
    [CrossRef]
  10. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).
  11. A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
    [CrossRef]
  12. M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes, “Transient stimulated Raman amplification in hydrogen,” J. Opt. Soc. Am. B 5, 37–52 (1988).
    [CrossRef]
  13. W. K. Bishel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986).
    [CrossRef]
  14. W. K. Bishel and G. Black, “Wavelength dependence of the Raman scattering cross section from 200–600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, and H. Pummer eds. (American Institute of Physics, New York, 1983), pp. 181–187.
  15. J. R. Murray and A. Javan, “Effect of collision on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
    [CrossRef]
  16. G. J. Rosasco, A. D. May, W. S. Hurst, L. B. Petway, and K. C. Smyth, “Broadening and shifting of the Raman Q branch of HD,” J. Chem. Phys. 90, 2115–2124 (1989).
    [CrossRef]
  17. Y. Taira, K. Ide, and H. Takuma, “Accurate measurement of the pressure broadening of the v1 Raman line of CH4 in the 1–50 bar region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–301 (1982).
    [CrossRef]
  18. J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
    [CrossRef]
  19. D. A. Haner and I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
    [CrossRef]
  20. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1993).
  21. T. Larsen, “Dispersion,” in Optische Konstanten, Vol. 8 of Landolt–Bornsten Zahlenwerte und Funktionen, K.-H. Helwege and A. M. Helwege, eds. (Springer-Verlag, Berlin, 1962), pp. 885–887.
  22. V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, and E. I. Yakubovich, Resonant Nonlinear Interactions of Light with Matter (Springer-Verlag, Berlin, 1989).
  23. V. Krylov, A. Rebane, A. G. Kalintsev, H. Schwoerer, and U. P. Wild, “Second-harmonic generation of amplified femtosecond Ti:sapphire laser pulses,” Opt. Lett. 20, 198–200 (1995).
    [CrossRef] [PubMed]
  24. H. Kawano, Y. Hirakawa, and T. Imasaka, “Generation of more than 40 rotational Raman lines by picosecond and femtosecond Ti:sapphire laser for Fourier synthesis,” Appl. Phys. B: Lasers Opt. 65, 1–4 (1997).
    [CrossRef]
  25. F. Hanson and P. Poirier, “Stimulated rotational Raman conversion in H2, D2 and HD,” IEEE J. Quantum Electron. 29, 2342–2345 (1993).
    [CrossRef]
  26. V. Krylov, A. Rebane, D. Erni, O. Ollikainen, U. Wild, V. Bespalov, and D. Staselko, “Stimulated Raman amplification of femtosecond pulses in hydrogen gas,” Opt. Lett. 21, 2005–2007 (1996).
    [CrossRef] [PubMed]
  27. W. H. Lowdermilk and G. I. Kachen, “Coherent transient pulse propagation,” Opt. Commun. 18, 68–69 (1976).
    [CrossRef]

1997

H. Kawano, Y. Hirakawa, and T. Imasaka, “Generation of more than 40 rotational Raman lines by picosecond and femtosecond Ti:sapphire laser for Fourier synthesis,” Appl. Phys. B: Lasers Opt. 65, 1–4 (1997).
[CrossRef]

1996

1995

1994

1993

F. Hanson and P. Poirier, “Stimulated rotational Raman conversion in H2, D2 and HD,” IEEE J. Quantum Electron. 29, 2342–2345 (1993).
[CrossRef]

1991

V. G. Bespalov, V. N. Krylov, V. N. Mikhailov, V. A. Parfenov, and D. I. Staselko, “Generating tunable radiation with high spectral luminance based on vibrational and rotational stimulated Raman scattering in gases,” Opt. Spectrosc. 70, 193–196 (1991).

1990

D. A. Haner and I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[CrossRef]

1989

G. J. Rosasco, A. D. May, W. S. Hurst, L. B. Petway, and K. C. Smyth, “Broadening and shifting of the Raman Q branch of HD,” J. Chem. Phys. 90, 2115–2124 (1989).
[CrossRef]

1988

M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes, “Transient stimulated Raman amplification in hydrogen,” J. Opt. Soc. Am. B 5, 37–52 (1988).
[CrossRef]

J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
[CrossRef]

1987

V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, “Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during superregenerative amplification,” Opt. Spectrosc. 63, 742–747 (1987).

N. J. Everall, J. P. Partanen, J. R. M. Barr, and M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64, 393–397 (1987).
[CrossRef]

1986

1983

P. G. May and W. Sibbett, “Transient stimulated Raman scattering of femtosecond laser pulses,” Appl. Phys. Lett. 43, 624–626 (1983).
[CrossRef]

1982

Y. Taira, K. Ide, and H. Takuma, “Accurate measurement of the pressure broadening of the v1 Raman line of CH4 in the 1–50 bar region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–301 (1982).
[CrossRef]

1979

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[CrossRef]

1976

W. H. Lowdermilk and G. I. Kachen, “Coherent transient pulse propagation,” Opt. Commun. 18, 68–69 (1976).
[CrossRef]

1972

J. R. Murray and A. Javan, “Effect of collision on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[CrossRef]

1970

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60–72 (1970).
[CrossRef]

Barr, J. R. M.

N. J. Everall, J. P. Partanen, J. R. M. Barr, and M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64, 393–397 (1987).
[CrossRef]

Bespalov, V.

Bespalov, V. G.

V. G. Bespalov, V. N. Krylov, V. N. Mikhailov, V. A. Parfenov, and D. I. Staselko, “Generating tunable radiation with high spectral luminance based on vibrational and rotational stimulated Raman scattering in gases,” Opt. Spectrosc. 70, 193–196 (1991).

V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, “Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during superregenerative amplification,” Opt. Spectrosc. 63, 742–747 (1987).

Bishel, W. K.

Bloembergen, N.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60–72 (1970).
[CrossRef]

Carlsten, J. L.

Carman, R. L.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60–72 (1970).
[CrossRef]

Duncan, M. D.

Dyer, M. J.

Erni, D.

Everall, N. J.

N. J. Everall, J. P. Partanen, J. R. M. Barr, and M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64, 393–397 (1987).
[CrossRef]

Haner, D. A.

D. A. Haner and I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[CrossRef]

Hanson, F.

F. Hanson and P. Poirier, “Stimulated rotational Raman conversion in H2, D2 and HD,” IEEE J. Quantum Electron. 29, 2342–2345 (1993).
[CrossRef]

Hirakawa, Y.

H. Kawano, Y. Hirakawa, and T. Imasaka, “Generation of more than 40 rotational Raman lines by picosecond and femtosecond Ti:sapphire laser for Fourier synthesis,” Appl. Phys. B: Lasers Opt. 65, 1–4 (1997).
[CrossRef]

Hurst, W. S.

G. J. Rosasco, A. D. May, W. S. Hurst, L. B. Petway, and K. C. Smyth, “Broadening and shifting of the Raman Q branch of HD,” J. Chem. Phys. 90, 2115–2124 (1989).
[CrossRef]

Ide, K.

Y. Taira, K. Ide, and H. Takuma, “Accurate measurement of the pressure broadening of the v1 Raman line of CH4 in the 1–50 bar region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–301 (1982).
[CrossRef]

Imasaka, T.

H. Kawano, Y. Hirakawa, and T. Imasaka, “Generation of more than 40 rotational Raman lines by picosecond and femtosecond Ti:sapphire laser for Fourier synthesis,” Appl. Phys. B: Lasers Opt. 65, 1–4 (1997).
[CrossRef]

Javan, A.

J. R. Murray and A. Javan, “Effect of collision on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[CrossRef]

Kachen, G. I.

W. H. Lowdermilk and G. I. Kachen, “Coherent transient pulse propagation,” Opt. Commun. 18, 68–69 (1976).
[CrossRef]

Kaiser, W.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[CrossRef]

Kalintsev, A. G.

Kawano, H.

H. Kawano, Y. Hirakawa, and T. Imasaka, “Generation of more than 40 rotational Raman lines by picosecond and femtosecond Ti:sapphire laser for Fourier synthesis,” Appl. Phys. B: Lasers Opt. 65, 1–4 (1997).
[CrossRef]

Krylov, V.

Krylov, V. N.

V. G. Bespalov, V. N. Krylov, V. N. Mikhailov, V. A. Parfenov, and D. I. Staselko, “Generating tunable radiation with high spectral luminance based on vibrational and rotational stimulated Raman scattering in gases,” Opt. Spectrosc. 70, 193–196 (1991).

V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, “Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during superregenerative amplification,” Opt. Spectrosc. 63, 742–747 (1987).

Laubereau, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[CrossRef]

Lii, C.

Lowdermilk, W. H.

W. H. Lowdermilk and G. I. Kachen, “Coherent transient pulse propagation,” Opt. Commun. 18, 68–69 (1976).
[CrossRef]

Mahon, R.

May, A. D.

G. J. Rosasco, A. D. May, W. S. Hurst, L. B. Petway, and K. C. Smyth, “Broadening and shifting of the Raman Q branch of HD,” J. Chem. Phys. 90, 2115–2124 (1989).
[CrossRef]

May, P. G.

P. G. May and W. Sibbett, “Transient stimulated Raman scattering of femtosecond laser pulses,” Appl. Phys. Lett. 43, 624–626 (1983).
[CrossRef]

Mazur, E.

McDermid, I. S.

D. A. Haner and I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[CrossRef]

Mikhailov, V. N.

V. G. Bespalov, V. N. Krylov, V. N. Mikhailov, V. A. Parfenov, and D. I. Staselko, “Generating tunable radiation with high spectral luminance based on vibrational and rotational stimulated Raman scattering in gases,” Opt. Spectrosc. 70, 193–196 (1991).

Murray, J. R.

J. R. Murray and A. Javan, “Effect of collision on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[CrossRef]

Ollikainen, O.

Ottusch, J. J.

J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
[CrossRef]

Parfenov, V. A.

V. G. Bespalov, V. N. Krylov, V. N. Mikhailov, V. A. Parfenov, and D. I. Staselko, “Generating tunable radiation with high spectral luminance based on vibrational and rotational stimulated Raman scattering in gases,” Opt. Spectrosc. 70, 193–196 (1991).

V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, “Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during superregenerative amplification,” Opt. Spectrosc. 63, 742–747 (1987).

Partanen, J. P.

N. J. Everall, J. P. Partanen, J. R. M. Barr, and M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64, 393–397 (1987).
[CrossRef]

Penzkofer, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[CrossRef]

Petway, L. B.

G. J. Rosasco, A. D. May, W. S. Hurst, L. B. Petway, and K. C. Smyth, “Broadening and shifting of the Raman Q branch of HD,” J. Chem. Phys. 90, 2115–2124 (1989).
[CrossRef]

Poirier, P.

F. Hanson and P. Poirier, “Stimulated rotational Raman conversion in H2, D2 and HD,” IEEE J. Quantum Electron. 29, 2342–2345 (1993).
[CrossRef]

Rebane, A.

Reintjes, J.

Repasky, K. S.

Rockwell, D. A.

J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
[CrossRef]

Rosasco, G. J.

G. J. Rosasco, A. D. May, W. S. Hurst, L. B. Petway, and K. C. Smyth, “Broadening and shifting of the Raman Q branch of HD,” J. Chem. Phys. 90, 2115–2124 (1989).
[CrossRef]

Schwoerer, H.

Shaw, M. J.

N. J. Everall, J. P. Partanen, J. R. M. Barr, and M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64, 393–397 (1987).
[CrossRef]

Shimizu, F.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60–72 (1970).
[CrossRef]

Sibbett, W.

P. G. May and W. Sibbett, “Transient stimulated Raman scattering of femtosecond laser pulses,” Appl. Phys. Lett. 43, 624–626 (1983).
[CrossRef]

Siegel, Y.

Sizov, V. N.

V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, “Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during superregenerative amplification,” Opt. Spectrosc. 63, 742–747 (1987).

Smyth, K. C.

G. J. Rosasco, A. D. May, W. S. Hurst, L. B. Petway, and K. C. Smyth, “Broadening and shifting of the Raman Q branch of HD,” J. Chem. Phys. 90, 2115–2124 (1989).
[CrossRef]

Staselko, D.

Staselko, D. I.

V. G. Bespalov, V. N. Krylov, V. N. Mikhailov, V. A. Parfenov, and D. I. Staselko, “Generating tunable radiation with high spectral luminance based on vibrational and rotational stimulated Raman scattering in gases,” Opt. Spectrosc. 70, 193–196 (1991).

V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, “Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during superregenerative amplification,” Opt. Spectrosc. 63, 742–747 (1987).

Taira, Y.

Y. Taira, K. Ide, and H. Takuma, “Accurate measurement of the pressure broadening of the v1 Raman line of CH4 in the 1–50 bar region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–301 (1982).
[CrossRef]

Takuma, H.

Y. Taira, K. Ide, and H. Takuma, “Accurate measurement of the pressure broadening of the v1 Raman line of CH4 in the 1–50 bar region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–301 (1982).
[CrossRef]

Tankersley, L. L.

Wang, C. S.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60–72 (1970).
[CrossRef]

Wang, J.

Wessel, J. G.

Wild, U.

Wild, U. P.

Yutanova, E. Yu.

V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, “Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during superregenerative amplification,” Opt. Spectrosc. 63, 742–747 (1987).

Appl. Phys. B: Lasers Opt.

H. Kawano, Y. Hirakawa, and T. Imasaka, “Generation of more than 40 rotational Raman lines by picosecond and femtosecond Ti:sapphire laser for Fourier synthesis,” Appl. Phys. B: Lasers Opt. 65, 1–4 (1997).
[CrossRef]

Appl. Phys. Lett.

P. G. May and W. Sibbett, “Transient stimulated Raman scattering of femtosecond laser pulses,” Appl. Phys. Lett. 43, 624–626 (1983).
[CrossRef]

Chem. Phys. Lett.

Y. Taira, K. Ide, and H. Takuma, “Accurate measurement of the pressure broadening of the v1 Raman line of CH4 in the 1–50 bar region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–301 (1982).
[CrossRef]

IEEE J. Quantum Electron.

J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
[CrossRef]

D. A. Haner and I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[CrossRef]

F. Hanson and P. Poirier, “Stimulated rotational Raman conversion in H2, D2 and HD,” IEEE J. Quantum Electron. 29, 2342–2345 (1993).
[CrossRef]

J. Chem. Phys.

G. J. Rosasco, A. D. May, W. S. Hurst, L. B. Petway, and K. C. Smyth, “Broadening and shifting of the Raman Q branch of HD,” J. Chem. Phys. 90, 2115–2124 (1989).
[CrossRef]

J. Mol. Spectrosc.

J. R. Murray and A. Javan, “Effect of collision on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

N. J. Everall, J. P. Partanen, J. R. M. Barr, and M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64, 393–397 (1987).
[CrossRef]

W. H. Lowdermilk and G. I. Kachen, “Coherent transient pulse propagation,” Opt. Commun. 18, 68–69 (1976).
[CrossRef]

Opt. Lett.

Opt. Spectrosc.

V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, “Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during superregenerative amplification,” Opt. Spectrosc. 63, 742–747 (1987).

V. G. Bespalov, V. N. Krylov, V. N. Mikhailov, V. A. Parfenov, and D. I. Staselko, “Generating tunable radiation with high spectral luminance based on vibrational and rotational stimulated Raman scattering in gases,” Opt. Spectrosc. 70, 193–196 (1991).

Phys. Rev. A

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60–72 (1970).
[CrossRef]

Prog. Quantum Electron.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[CrossRef]

Other

W. K. Bishel and G. Black, “Wavelength dependence of the Raman scattering cross section from 200–600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, and H. Pummer eds. (American Institute of Physics, New York, 1983), pp. 181–187.

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1993).

T. Larsen, “Dispersion,” in Optische Konstanten, Vol. 8 of Landolt–Bornsten Zahlenwerte und Funktionen, K.-H. Helwege and A. M. Helwege, eds. (Springer-Verlag, Berlin, 1962), pp. 885–887.

V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, and E. I. Yakubovich, Resonant Nonlinear Interactions of Light with Matter (Springer-Verlag, Berlin, 1989).

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).

C. Jordan, K. Stankov, and G. Marowsky, “Compression of femtosecond light pulses by stimulated Raman scattering,” in International Quantum Electronics Conference, Vol. 9 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 97.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental arrangement: CPA-1000, Clark MXR Model CPA 1000 1-kHz regenerative amplified femtosecond Ti:sapphire laser; SHG, β-barium borate crystal for second-harmonic generation; F, variable neutral-density attenuator; T, focusing telescope; L, collimating lens; PM, powermeter; AC, autocorrelator; SP, grating spectrometer.

Fig. 2
Fig. 2

Energy conversion efficiency to the first vibrational Stokes component as a function of gas pressure for four gases. The pump pulse energy at 390-nm wavelength is 0.1 mJ. Arrows indicate the threshold of white-light-continuum generation.

Fig. 3
Fig. 3

Dependence of energy of the first vibrational Stokes pulse on the pump pulse energy for four gases. Gas pressure: in CH4, 3×106 Pa; in H2, 4.5×106 Pa; in D2, 4.5×106 Pa; in HD, 2.6×106 Pa.

Fig. 4
Fig. 4

Dependence of SRS-generation threshold energy on gas pressure.

Fig. 5
Fig. 5

Spectra of stimulated Raman components in several gases: (a) second anti-Stokes (As2) and (b) first anti-Stokes (As1) in H2 at p=3×106 Pa; (c) first Stokes (S1) and (d) second Stokes (S2) in D2 at p=4.5×106 Pa; (e) first anti-Stokes and (f) second Stokes in CH4. Spectra (a), (b), and (d) are excited with a circularly polarized pump; spectra (c), (e), and (f) are excited with a linearly polarized pump.

Fig. 6
Fig. 6

Autocorrelation traces of first vibrational Stokes pulses in H2, D2, and CH4 (solid curves) compared with autocorrelation of the pump pulses at the input of the SRS cell (dashed curves).

Fig. 7
Fig. 7

Intensity spectrum of broadband SRS in H2 at p=5×106 Pa and pump pulse energy 0.11 mJ: RC, Rayleigh scattering component; CG’s, broadband spectral continua; S1, first vibrational Stokes component.

Tables (2)

Tables Icon

Table 1 Summary of Spectroscopic Parameters of Four Gases for SRS at Pressure p=3×106 Pa and Excitation Wavelength λp=390 nm

Tables Icon

Table 2 Wavelengths of Vibrational–Rotational Raman Components Observed in Four Gases with Excitation Wavelength λp=390 nma

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

IsI0exp8gT20L0τpIp(z, t)dzdt1/2,
IsI0exp16πgWpT2λp1/2,
Wp=-P(t)dt
Wtr=10.5T2λpg.
Δυ=1up-1us=1cnp-ns-λpdnpdλp-λpdnsdλs,
n-1=A11+B1λ2,
Δυ=pA1B1c1λp2-1λs2=pA1B1c2νphλp-νph2,

Metrics