Abstract

In holographic experiments many photorefractive crystals show refractive-index changes much smaller than one would expect from the known electro-optic coefficients and space-charge fields. We show that degradation of the interference pattern is the origin of this effect. The degree of modulation of a light grating in photorefractive crystals is measured by three methods and compared with the modulation of the grating of the incident light. All methods, measurement of the amplitudes of fundamental and second-order gratings, of the grating amplitudes in a crystal with and without another crystal in front of it, and of the drift currents through an inhomogeneously illuminated sample, yield consistent results: In lithium niobate there is almost no degradation of the light pattern. However, in our barium titanate and potassium tantalate–niobate samples the degree of modulation is smaller, and the reduction factor is 0.55 and 0.60, respectively. Inhomogeneities of refractive-index changes are shown to be the origin of the effect.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter and J.-P. Huignard, Photorefractive Effects and Materials, P. Günter and J.-P. Huignard, eds., Vols. 61 and 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988).
  2. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915 (1993).
    [CrossRef] [PubMed]
  3. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375 (1996).
    [CrossRef] [PubMed]
  4. J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).
  5. D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. (Int. Ed.) 273, 70 (1995).
  6. F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387 (1983).
    [CrossRef]
  7. K. Buse, “Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods,” Appl. Phys. B 64, 273 (1997).
    [CrossRef]
  8. K. Buse, “Light-induced charge transport processes in photorefractive crystals. II. Materials,” Appl. Phys. B 64, 391 (1997).
    [CrossRef]
  9. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949,  961 (1979).
  10. S. Loheide, H. Hesse, E. Krätzig, and K. H. Ringhofer, “Photorefractive properties of tetragonal potassium tantalate–niobate crystals,” Opt. Mater. 2, 65 (1993).
    [CrossRef]
  11. S. Loheide, S. Riehemann, R. Pankrath, and E. Krätzig, “Influence of Fe doping on the photorefractive properties of KTa1−xNbxO3,” Ferroelectrics 160, 213 (1994).
    [CrossRef]
  12. S. Loheide, S. Riehemann, and E. Krätzig, “Beam-coupling in tetragonal potassium tantalate–niobate crystals,” Appl. Phys. A 58, 343 (1994).
    [CrossRef]
  13. C. Medrano, E. Voit, P. Amrhein, and P. Günter, “Optimization of the photorefractive properties of KNbO3 crystals,” J. Appl. Phys. 64, 4668 (1988).
    [CrossRef]
  14. R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
    [CrossRef]
  15. L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, K89 (1989).
    [CrossRef]
  16. M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941 (1994).
    [CrossRef]
  17. K. Buse, U. van Stevendaal, R. Pankrath, and E. Krätzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6 crystals,” J. Opt. Soc. Am. B 13, 1461 (1996).
    [CrossRef]
  18. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
    [CrossRef]
  19. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation of congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
    [CrossRef]
  20. M. Zgonik, K. Nakagawa, and P. Günter, “Electro-optic and dielectric properties of photorefractive BaTiO3 and KNbO3,” J. Opt. Soc. Am. B 12, 1416 (1995).
    [CrossRef]
  21. K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Krätzig, “Refractive indices of single domain BaTiO3 for different wavelengths and temperatures,” Phys. Status Solidi A 135, K87 (1993).
    [CrossRef]
  22. D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688 (1974).
    [CrossRef]

1997 (2)

K. Buse, “Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods,” Appl. Phys. B 64, 273 (1997).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals. II. Materials,” Appl. Phys. B 64, 391 (1997).
[CrossRef]

1996 (3)

I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375 (1996).
[CrossRef] [PubMed]

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).

K. Buse, U. van Stevendaal, R. Pankrath, and E. Krätzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6 crystals,” J. Opt. Soc. Am. B 13, 1461 (1996).
[CrossRef]

1995 (2)

1994 (3)

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941 (1994).
[CrossRef]

S. Loheide, S. Riehemann, R. Pankrath, and E. Krätzig, “Influence of Fe doping on the photorefractive properties of KTa1−xNbxO3,” Ferroelectrics 160, 213 (1994).
[CrossRef]

S. Loheide, S. Riehemann, and E. Krätzig, “Beam-coupling in tetragonal potassium tantalate–niobate crystals,” Appl. Phys. A 58, 343 (1994).
[CrossRef]

1993 (3)

F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915 (1993).
[CrossRef] [PubMed]

S. Loheide, H. Hesse, E. Krätzig, and K. H. Ringhofer, “Photorefractive properties of tetragonal potassium tantalate–niobate crystals,” Opt. Mater. 2, 65 (1993).
[CrossRef]

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Krätzig, “Refractive indices of single domain BaTiO3 for different wavelengths and temperatures,” Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

1989 (2)

R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
[CrossRef]

L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, K89 (1989).
[CrossRef]

1988 (1)

C. Medrano, E. Voit, P. Amrhein, and P. Günter, “Optimization of the photorefractive properties of KNbO3 crystals,” J. Appl. Phys. 64, 4668 (1988).
[CrossRef]

1984 (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation of congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

1983 (1)

F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387 (1983).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949,  961 (1979).

1974 (1)

D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688 (1974).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Albers, J.

F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387 (1983).
[CrossRef]

Amrhein, P.

C. Medrano, E. Voit, P. Amrhein, and P. Günter, “Optimization of the photorefractive properties of KNbO3 crystals,” J. Appl. Phys. 64, 4668 (1988).
[CrossRef]

Ashley, J.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).

Bernal, M.-P.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).

Bernasconi, P.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941 (1994).
[CrossRef]

Blaum, M.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).

Burr, G. W.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).

Buse, K.

K. Buse, “Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods,” Appl. Phys. B 64, 273 (1997).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals. II. Materials,” Appl. Phys. B 64, 391 (1997).
[CrossRef]

K. Buse, U. van Stevendaal, R. Pankrath, and E. Krätzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6 crystals,” J. Opt. Soc. Am. B 13, 1461 (1996).
[CrossRef]

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Krätzig, “Refractive indices of single domain BaTiO3 for different wavelengths and temperatures,” Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Chang, T. Y.

Christian, W.

Coufal, H.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).

Duelli, M.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941 (1994).
[CrossRef]

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation of congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Garrett, M. H.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941 (1994).
[CrossRef]

Grygier, R. K.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).

Günter, H.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).

Günter, P.

M. Zgonik, K. Nakagawa, and P. Günter, “Electro-optic and dielectric properties of photorefractive BaTiO3 and KNbO3,” J. Opt. Soc. Am. B 12, 1416 (1995).
[CrossRef]

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941 (1994).
[CrossRef]

C. Medrano, E. Voit, P. Amrhein, and P. Günter, “Optimization of the photorefractive properties of KNbO3 crystals,” J. Appl. Phys. 64, 4668 (1988).
[CrossRef]

Hesse, H.

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Krätzig, “Refractive indices of single domain BaTiO3 for different wavelengths and temperatures,” Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

S. Loheide, H. Hesse, E. Krätzig, and K. H. Ringhofer, “Photorefractive properties of tetragonal potassium tantalate–niobate crystals,” Opt. Mater. 2, 65 (1993).
[CrossRef]

Hoffnagle, J. A.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).

Holtmann, L.

L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, K89 (1989).
[CrossRef]

Hong, J. H.

Jefferson, C. M.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Krätzig, E.

K. Buse, U. van Stevendaal, R. Pankrath, and E. Krätzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6 crystals,” J. Opt. Soc. Am. B 13, 1461 (1996).
[CrossRef]

S. Loheide, S. Riehemann, R. Pankrath, and E. Krätzig, “Influence of Fe doping on the photorefractive properties of KTa1−xNbxO3,” Ferroelectrics 160, 213 (1994).
[CrossRef]

S. Loheide, S. Riehemann, and E. Krätzig, “Beam-coupling in tetragonal potassium tantalate–niobate crystals,” Appl. Phys. A 58, 343 (1994).
[CrossRef]

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Krätzig, “Refractive indices of single domain BaTiO3 for different wavelengths and temperatures,” Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

S. Loheide, H. Hesse, E. Krätzig, and K. H. Ringhofer, “Photorefractive properties of tetragonal potassium tantalate–niobate crystals,” Opt. Mater. 2, 65 (1993).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949,  961 (1979).

Laeri, F.

F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387 (1983).
[CrossRef]

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation of congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Loheide, S.

S. Loheide, S. Riehemann, and E. Krätzig, “Beam-coupling in tetragonal potassium tantalate–niobate crystals,” Appl. Phys. A 58, 343 (1994).
[CrossRef]

S. Loheide, S. Riehemann, R. Pankrath, and E. Krätzig, “Influence of Fe doping on the photorefractive properties of KTa1−xNbxO3,” Ferroelectrics 160, 213 (1994).
[CrossRef]

S. Loheide, H. Hesse, E. Krätzig, and K. H. Ringhofer, “Photorefractive properties of tetragonal potassium tantalate–niobate crystals,” Opt. Mater. 2, 65 (1993).
[CrossRef]

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Krätzig, “Refractive indices of single domain BaTiO3 for different wavelengths and temperatures,” Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

MacFarlane, R. M.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).

Maillard, A.

R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
[CrossRef]

Marcus, B.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949,  961 (1979).

McMichael, I.

Medrano, C.

C. Medrano, E. Voit, P. Amrhein, and P. Günter, “Optimization of the photorefractive properties of KNbO3 crystals,” J. Appl. Phys. 64, 4668 (1988).
[CrossRef]

Mersch, F.

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Krätzig, “Refractive indices of single domain BaTiO3 for different wavelengths and temperatures,” Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Mikulyak, R. M.

D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688 (1974).
[CrossRef]

Mok, F.

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. (Int. Ed.) 273, 70 (1995).

Mok, F. H.

Nakagawa, K.

Nelson, D. F.

D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688 (1974).
[CrossRef]

Odoulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949,  961 (1979).

Pankrath, R.

K. Buse, U. van Stevendaal, R. Pankrath, and E. Krätzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6 crystals,” J. Opt. Soc. Am. B 13, 1461 (1996).
[CrossRef]

S. Loheide, S. Riehemann, R. Pankrath, and E. Krätzig, “Influence of Fe doping on the photorefractive properties of KTa1−xNbxO3,” Ferroelectrics 160, 213 (1994).
[CrossRef]

Pletcher, D.

Psaltis, D.

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. (Int. Ed.) 273, 70 (1995).

Riehemann, S.

S. Loheide, S. Riehemann, R. Pankrath, and E. Krätzig, “Influence of Fe doping on the photorefractive properties of KTa1−xNbxO3,” Ferroelectrics 160, 213 (1994).
[CrossRef]

S. Loheide, S. Riehemann, and E. Krätzig, “Beam-coupling in tetragonal potassium tantalate–niobate crystals,” Appl. Phys. A 58, 343 (1994).
[CrossRef]

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Krätzig, “Refractive indices of single domain BaTiO3 for different wavelengths and temperatures,” Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Ringhofer, K. H.

S. Loheide, H. Hesse, E. Krätzig, and K. H. Ringhofer, “Photorefractive properties of tetragonal potassium tantalate–niobate crystals,” Opt. Mater. 2, 65 (1993).
[CrossRef]

Rupp, R. A.

R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
[CrossRef]

Rytz, D.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941 (1994).
[CrossRef]

Schlesser, R.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941 (1994).
[CrossRef]

Shelby, R. M.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).

Sincerbox, G. T.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949,  961 (1979).

Tschudi, T.

F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387 (1983).
[CrossRef]

van Stevendaal, U.

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949,  961 (1979).

Voit, E.

C. Medrano, E. Voit, P. Amrhein, and P. Günter, “Optimization of the photorefractive properties of KNbO3 crystals,” J. Appl. Phys. 64, 4668 (1988).
[CrossRef]

Walter, J.

R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
[CrossRef]

Wittmann, G.

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).

Wu, X.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941 (1994).
[CrossRef]

Zgonik, M.

M. Zgonik, K. Nakagawa, and P. Günter, “Electro-optic and dielectric properties of photorefractive BaTiO3 and KNbO3,” J. Opt. Soc. Am. B 12, 1416 (1995).
[CrossRef]

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941 (1994).
[CrossRef]

Zhu, Y.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (2)

S. Loheide, S. Riehemann, and E. Krätzig, “Beam-coupling in tetragonal potassium tantalate–niobate crystals,” Appl. Phys. A 58, 343 (1994).
[CrossRef]

R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
[CrossRef]

Appl. Phys. B (2)

K. Buse, “Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods,” Appl. Phys. B 64, 273 (1997).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals. II. Materials,” Appl. Phys. B 64, 391 (1997).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Ferroelectrics (2)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949,  961 (1979).

S. Loheide, S. Riehemann, R. Pankrath, and E. Krätzig, “Influence of Fe doping on the photorefractive properties of KTa1−xNbxO3,” Ferroelectrics 160, 213 (1994).
[CrossRef]

J. Appl. Phys. (2)

C. Medrano, E. Voit, P. Amrhein, and P. Günter, “Optimization of the photorefractive properties of KNbO3 crystals,” J. Appl. Phys. 64, 4668 (1988).
[CrossRef]

D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688 (1974).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Focus World (1)

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).

Opt. Commun. (1)

F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387 (1983).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

S. Loheide, H. Hesse, E. Krätzig, and K. H. Ringhofer, “Photorefractive properties of tetragonal potassium tantalate–niobate crystals,” Opt. Mater. 2, 65 (1993).
[CrossRef]

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation of congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Phys. Rev. B (1)

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941 (1994).
[CrossRef]

Phys. Status Solidi A (2)

L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, K89 (1989).
[CrossRef]

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Krätzig, “Refractive indices of single domain BaTiO3 for different wavelengths and temperatures,” Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Sci. Am. (Int. Ed.) (1)

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. (Int. Ed.) 273, 70 (1995).

Other (1)

P. Günter and J.-P. Huignard, Photorefractive Effects and Materials, P. Günter and J.-P. Huignard, eds., Vols. 61 and 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic drawing of the arrangement to measure refractive-index changes of first- and second-order gratings ΔnoK and Δno2K. Intensities and wavelength of the writing beams are I1w and I2w and λ=515 nm. Gratings with spatial frequencies K and 2K are read under the angles ΘK and Θ2K, respectively, with laser light of IKr=I2Kr=48 W m-2 and λ=633 nm. The subscripts trans and diff denote the intensities of transmitted and diffracted beams, respectively.

Fig. 2
Fig. 2

Refractive-index change ΔneK of the K grating as a function of recording time t for BaTiO3 sample 1. After 100 s the writing beams are switched off and the hologram is erased. (Recording intensity, 1.6 kW m-2; wavelength, 515 nm; degree of modulation of the light pattern, minput=0.92; reading intensity, 48 W m-2; wavelength, λ=633 nm.)

Fig. 3
Fig. 3

Schematic drawing of the arrangement to measure refractive-index changes in reference crystal LiNbO3 1 without and with another sample placed in front of it. The writing beams, with intensities I1w and I2w, are extraordinarily polarized with respect to the reference crystal, and the wavelength is λ=515 nm. The reading beam has an intensity Ir=48 W m-2 at λ=633 nm and is ordinarily polarized. Grating vector K of the hologram is parallel to the crystallographic c axis for the reference crystal and perpendicular to c for any other test crystal placed in front of LiNbO3 sample 1.

Fig. 4
Fig. 4

Schematic drawing of the arrangement to measure the external current density jext. The wavelength of the illuminating beams with intensities I1w and I2w is λ=515 nm. With the help of a voltage supply (V), an external electric field is applied to the crystal and the current is measured by an electrometer (A).

Fig. 5
Fig. 5

Refractive-index changes ΔnoK and Δno2K of the K and 2K gratings (ordinary light polarization) versus degree of modulation minput of the incident light pattern (a) for LiNbO3 sample 1 and (b) for BaTiO3 sample 1 (ΔneK and Δne2K extraordinary light polarization). The symbols are measured results, and the curves are fits as described in Subsections 2.C and 3.A. (Dashed curves, reduction factor R1=1; solid curves, reduction factor R1=0.51.)

Fig. 6
Fig. 6

Current density jext as a function of degree of modulation minput for LiNbO3 sample 1. The symbols are measured results, and the solid curve is a fit as described in Subsections 2.E and 3.C.

Fig. 7
Fig. 7

Images of light-interference patterns recorded with a CCD detector from the rear sides (a) of LiNbO3 sample 3 and (b) of BaTiO3 sample 4. The wavelength of the illuminating beams with the total writing intensity I0=1.6 kW m-2 is λ=515 nm, and the degree of modulation of the light pattern is minput=1. The spatial frequency is K=0.9 μm-1.

Tables (4)

Tables Icon

Table 1 Notation, Dimensions, Doping Concentrations in the Melt, Absorption Coefficients αo,515 nm for Ordinarily Polarized Light of Wavelength 515 nm, and Photoconductivity Nonlinearity Parameters x of the Samples Investigateda

Tables Icon

Table 2 Scaling Factor R1 of the Degree of Modulation of the Light Pattern Deduced from the Ratio between the Amplitudes of K and 2K Gratingsa

Tables Icon

Table 3 Scaling Factor R2 of the Degree of Modulation of the Light Pattern Deduced from Reduction of the Grating Amplitude in LiNbO3 Sample 3 by Placement of Another Sample in Front of Ita

Tables Icon

Table 4 Scaling Factor R3 of the Modulation Degree of the Light Pattern Deduced from Measurements of the Drift Current through Crystalsa

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I=I0[1+minputcos(Kz)],
Δno(e)=-(1/2)no(e)3r13(33) Esc,
j=eμhE-eDh/ z,
j=j(0)+(1/2)[ j(1)exp(iKz)+j(1)*exp(-iKz)]+(1/2)[ j(2)exp(i2Kz)+j(2)*exp(-i2Kz)].
E(1)=iαED1+12β 2-β(α/2)2-1-β×1-α22+14β 2(α/2)2-1-1,
E(2)=-α2 E(1)1-4 βα21-α22+14β2(α/2)2-1×1+12β2-β(α/2)2-1-β-1.
E(1)=imcrystal ED1-mcrystal22-1,
E(2)=-mcrystal2 E(1).
|Δno(e)K|=12no(e)3r13(33)E(1),
|Δno(e)2K|=12no(e)3r13(33)E(2).
jext0c[1+mcrystalcos(Kz)]-xd z-1.

Metrics