Abstract

The electronic and nuclear contributions to the third-order nonlinearity of glasses are separated by use of 100-fs pulses in a time-resolved heterodyne optical Kerr effect technique. A direct estimate of the relative strengths of electronic and nuclear contributions was made by the comparison between the nuclear contribution deduced from the Raman spectra with the Kerr signal. The ratio between the electronic and nuclear response functions was ∼5/1 in a tellurium oxide glass sample. The time evolution of the nuclear contribution is in good agreement with results deduced from the Raman spectra.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen and W. J. Tomlinson, “Effect of the Raman part of the nonlinear refractive index on propagation of ultrashort optical pulses in fibers,” J. Opt. Soc. Am. B 9, 565 (1992); R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Hauss, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159 (1989).
    [CrossRef]
  2. R. Hellwarth, J. Cherlow, and T. T. Tang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964 (1975).
    [CrossRef]
  3. I. Thomaseau, J. Etchepare, G. Grillon, and A. Migus, “Electronic nonlinear optical susceptibilities of silicate glasses,” Opt. Lett. 10, 223 (1985).
    [CrossRef]
  4. I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses,” J. Opt. Soc. Am. B 12, 2053 (1995).
    [CrossRef]
  5. I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Time-domain observation of nuclear contributions to the optical nonlinearities of glasses,” Phys. Rev. B 54, 641 (1996).
    [CrossRef]
  6. D. McMorrow and W. T. Lotshaw, “The frequency response of condensed-phase media to femtosecond optical pulses: spectral-filter effects,” Chem. Phys. Lett. 174, 85 (1990).
    [CrossRef]
  7. A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29, No. 9 (1994).
    [CrossRef]

1996 (1)

I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Time-domain observation of nuclear contributions to the optical nonlinearities of glasses,” Phys. Rev. B 54, 641 (1996).
[CrossRef]

1995 (1)

1994 (1)

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29, No. 9 (1994).
[CrossRef]

1990 (1)

D. McMorrow and W. T. Lotshaw, “The frequency response of condensed-phase media to femtosecond optical pulses: spectral-filter effects,” Chem. Phys. Lett. 174, 85 (1990).
[CrossRef]

1985 (1)

1975 (1)

R. Hellwarth, J. Cherlow, and T. T. Tang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964 (1975).
[CrossRef]

Aitken, B. G.

I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Time-domain observation of nuclear contributions to the optical nonlinearities of glasses,” Phys. Rev. B 54, 641 (1996).
[CrossRef]

I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses,” J. Opt. Soc. Am. B 12, 2053 (1995).
[CrossRef]

Berthereau, A.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29, No. 9 (1994).
[CrossRef]

Borrelli, N. F.

I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Time-domain observation of nuclear contributions to the optical nonlinearities of glasses,” Phys. Rev. B 54, 641 (1996).
[CrossRef]

I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses,” J. Opt. Soc. Am. B 12, 2053 (1995).
[CrossRef]

Canioni, L.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29, No. 9 (1994).
[CrossRef]

Cherlow, J.

R. Hellwarth, J. Cherlow, and T. T. Tang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964 (1975).
[CrossRef]

Couzi, M.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29, No. 9 (1994).
[CrossRef]

Ducasse, A.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29, No. 9 (1994).
[CrossRef]

Etchepare, J.

Grillon, G.

Hellwarth, R.

R. Hellwarth, J. Cherlow, and T. T. Tang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964 (1975).
[CrossRef]

Kang, I.

I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Time-domain observation of nuclear contributions to the optical nonlinearities of glasses,” Phys. Rev. B 54, 641 (1996).
[CrossRef]

I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses,” J. Opt. Soc. Am. B 12, 2053 (1995).
[CrossRef]

Krauss, T. D.

I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Time-domain observation of nuclear contributions to the optical nonlinearities of glasses,” Phys. Rev. B 54, 641 (1996).
[CrossRef]

I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses,” J. Opt. Soc. Am. B 12, 2053 (1995).
[CrossRef]

Le Flem, G.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29, No. 9 (1994).
[CrossRef]

Le Luyer, Y.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29, No. 9 (1994).
[CrossRef]

Lotshaw, W. T.

D. McMorrow and W. T. Lotshaw, “The frequency response of condensed-phase media to femtosecond optical pulses: spectral-filter effects,” Chem. Phys. Lett. 174, 85 (1990).
[CrossRef]

McMorrow, D.

D. McMorrow and W. T. Lotshaw, “The frequency response of condensed-phase media to femtosecond optical pulses: spectral-filter effects,” Chem. Phys. Lett. 174, 85 (1990).
[CrossRef]

Migus, A.

Olazcuaga, R.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29, No. 9 (1994).
[CrossRef]

Sarger, L.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29, No. 9 (1994).
[CrossRef]

Segonds, P.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29, No. 9 (1994).
[CrossRef]

Tang, T. T.

R. Hellwarth, J. Cherlow, and T. T. Tang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964 (1975).
[CrossRef]

Thomaseau, I.

Wise, F. W.

I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Time-domain observation of nuclear contributions to the optical nonlinearities of glasses,” Phys. Rev. B 54, 641 (1996).
[CrossRef]

I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses,” J. Opt. Soc. Am. B 12, 2053 (1995).
[CrossRef]

Chem. Phys. Lett. (1)

D. McMorrow and W. T. Lotshaw, “The frequency response of condensed-phase media to femtosecond optical pulses: spectral-filter effects,” Chem. Phys. Lett. 174, 85 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Mater. Res. Bull. (1)

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29, No. 9 (1994).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Time-domain observation of nuclear contributions to the optical nonlinearities of glasses,” Phys. Rev. B 54, 641 (1996).
[CrossRef]

R. Hellwarth, J. Cherlow, and T. T. Tang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964 (1975).
[CrossRef]

Other (1)

R. H. Stolen and W. J. Tomlinson, “Effect of the Raman part of the nonlinear refractive index on propagation of ultrashort optical pulses in fibers,” J. Opt. Soc. Am. B 9, 565 (1992); R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Hauss, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

TRHOKE signal of a 20% Nb2O580% TeO2 glass (open circles). The inset shows the temporal evolution of the phase of the signal. The dashed curve presents the evolution of the nuclear response function computed according to the Raman spectra presented in Fig. 3. The solid curve presents the evolution of the whole TRHOKE signal when an instantaneous electronic response function is added to the nuclear response function. The ratio between the electronic and nuclear response functions is ∼5/1.  

Fig. 3
Fig. 3

Imaginary part of the corrected Raman spectra. The calculated real part is shown in the inset. The arrows indicate the frequency components excited by a 100-fs laser pulse.

Fig. 4
Fig. 4

(a) Kernel b(t) nuclear response function of the 20% Nb2O580% TeO2 glass sample deduced from the Raman spectra, (b)–(d) nuclear response function computed for sech2-type laser pulses with temporal widths of, respectively, (b) 35 fs, (c) 300 fs, and (d) 400 fs.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P(3)(t)=σE(t)E(t)E(t)+E(t)-dta(t-t)E(t)E(t)+-dtE(t)b(t-t)E(t)E(t),
Im[χ1221(3)(Δ)]=Im[χ1212(3)(Δ)]=πc4νω3 1-exp-ΔkT d2σdΩdΔ.
Re[χ(3)(Δ)]=1π - dνν-Δ Im[χ(3)(ν)].
b(t)=2π 0dΔ Im[χ1221(3)(Δ)]sin(Δt)
Δn(t)=σIpump(t)+-dt b(t-t)Ipump(t),
STRHOKE(tD)
=-dt Iprobe(t-tD)Δn(t)=-dt[σIprobe(t-tD)Ipump(t)+-dt b(t-t)Iprobe(t-tD)Ipump(t)],
STRHOKE(tD)=σG(2)(tD)+-dtb(t)G(2)(t-tD)=SETRHOKE(tD)+SNTRHOKE(tD),
G(2)(tD)=-dt Iprobe(t-tD)Ipump(t).
STRHOKE(Δ)=12π -dt STRHOKE(t)exp(iΔt)=σG(2)(Δ)+χ1221(3)(Δ)G(2)(Δ),
χ1221(3)(Δ)=12π -dt b(t)exp(iΔt)=STRHOKE(Δ)G(2)(Δ)-σ

Metrics